
大数据和云计算之间那点儿非同一般的关系
大数据是一个通用术语,用来指当前业务领域中存在的各种数据。从医疗机构的数字数据和记录到政府机构的大量文件,人们把这些文件存档供将来参考,技术为我们提供了一个面向服务的架构来分析这些信息。大数据是永远不可能被归档到在个描述或定义下。关于信息技术的神器之处在于,它始终在不断发展,并且可供愿意接受信息技术的公司使用。另一方面,云计算的发展使得商业企业更容易获得可负担得起的软件包。云计算的使用大大降低了存储公司信息的成本,这也带来了小型企业可以利用的多个应用程序。
自互联网诞生以来,随着云计算的不断发展,互联网上广泛的信息爆炸式增长。标准用户和数字营销人员现在可以每天使用社交媒体营销平台来生成大量关于消费者的信息。有时,对于机构和企业来说,管理每天生成和存储的数据量就是一项相当艰巨的任务。例如,每天创建2.5万亿字节的数据,这可能会给云计算带来存储和排序挑战。
这正是大数据用来管理海量数据如何通过云计算存储的地方。总而言之,这两种技术形式提供的解决方案既适应业务分析、也适用于大数据。在这篇文章中,将重点介绍如何使用大数据和云计算来管理政府机构和商业机构日常生成的大量数据。
可购性
对于那些预算计划比较紧张,但又需要更新技术的企业或机构来说,云技术可能是解决燃眉之需的一大利器。用于管理大数据的成本资源,即使是小公司,也在预算之内,而且在市场上也很容易找到合适的产品。在云计算出现之前,商业机构和政府机构花费大笔资金建立信息技术部门来管理数据,甚至花更多的时间来更新这些IT系统。今天,由于技术的进步,企业可以把他们的大数据托管在异地的服务器上,或者按需支付。
敏捷性
传统的数据存储和管理方法正变得越来越难以管理,因为数据存储和管理非常慢,需要公司花费大量时间从中检索信息。有时,安装和运行服务器可能需要几周甚至几个月的时间。云计算的出现有可能为企业或机构提供所需的全部存储需求。一个基于云计算的公司数据库可以在几分钟内完成安装,并将数据存储在数千个虚拟服务器中,在这些服务器中,只有一台计算机或移动设备和互联网连接的人可以很轻松访问它。
数据处理
海量数据的爆炸式增长带来了管理数据的挑战。例如,社交媒体会产生大量的数据,这对于在推文、帖子、博客或照片等类别中进行处理来说是具有挑战性的。对于大数据,有一些分析平台,比如Apache Hadoop,可以在将非结构化数据存储到云中之前处理这些数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29