京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言聚类算法比较
在使用不同的聚类算法完成数据聚类操作后,我们可以对算法的性能进行评估,绝大多数情况下,我们即可以使用簇内距离也可以使用簇间距离作为评价标准。使用fpc算法包的cluster.stat函数来比较不同的聚类算法。
操作
导入fpc包,选择层次聚类算法,距离计算采用single方法(最短距离法),将得到簇存放在hc_single中:
library(fpc)
single_c = hclust(dist(customer),method = "single")
hc_single = cutree(single_c,k = 4)
选择层次聚类算法,距离计算采用complete方法(最长距离法),将得到的簇存放在hc_complete:
complete_c = hclust(dist(customer),method = "complete")
hc_complte = cutree(complete_c,k = 4)
选择k均值聚类算法,将得到的簇存放km对象中:
set.seed(22)
km = kmeans(customer,4)
获得km聚类算法聚类结果的基本统计信息:
cs = cluster.stats(dist(customer),km$cluster)
通常我们习惯使用within.cluster.ss和avg.silwidth这两个函数来验证聚类算法:
cs[c("within.cluster.ss","avg.silwidth")]
$within.cluster.ss
[1] 61.3489
$avg.silwidth
[1] 0.4640587
将得到的不同方法生成聚类结果的统计信息并以列表显示:
sapply(list(kmeans = km$cluster,hc_single = hc_single,hc_complte = hc_complte), function(c)cluster.stats(dist(customer),c)[c("within.cluster.ss","avg.silwidth")])
kmeans hc_single hc_complte
within.cluster.ss 61.3489 136.0092 65.94076
avg.silwidth 0.4640587 0.2481926 0.4255961
原理
聚类结果的验证通常采用两种技术:簇内距离和簇间距离。其中,簇间距离距离越大,聚类效果越好,而簇内距离越小,聚类效果越理想。使用fpc包中的cluster.stat函数来计算训练好的聚类对象的相关统计信息。
从输出结果可以得知,within.cluster.ss计算的是每个聚类内部的距离平方程,而avg.silwidth计算的是平均轮廓值。within.cluster.ss的计算结果体现了同一个簇之间对象的相关程度,该值越小,簇内对象的相关性越大。而avg.silwidth值则同时考虑了簇内对象的聚合度和簇内对象的聚合度簇间对象的分离度。数学上对于每个点x可以采用下列公式计算其轮廓系数:
轮廓系数(x) = [b(x) - a(x)]/max([b(x),a(x)])
其中,a(x)是点x到所有与它在同一簇中的其他点的平均距离,而b(x)则是点x到所有与它不在同一簇的点平均距离的最小值。通常轮廓系数取值范围为0~1,越接近于1说明聚类效果越好。
从最后产生的结果可以知道,在within.cluster.ss和avg.silwidth测量长度下基于最长距离的层次聚类算法的聚类效果要优于最短距离层次聚类算法和k均值算法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31