
R语言聚类算法比较
在使用不同的聚类算法完成数据聚类操作后,我们可以对算法的性能进行评估,绝大多数情况下,我们即可以使用簇内距离也可以使用簇间距离作为评价标准。使用fpc算法包的cluster.stat函数来比较不同的聚类算法。
操作
导入fpc包,选择层次聚类算法,距离计算采用single方法(最短距离法),将得到簇存放在hc_single中:
library(fpc)
single_c = hclust(dist(customer),method = "single")
hc_single = cutree(single_c,k = 4)
选择层次聚类算法,距离计算采用complete方法(最长距离法),将得到的簇存放在hc_complete:
complete_c = hclust(dist(customer),method = "complete")
hc_complte = cutree(complete_c,k = 4)
选择k均值聚类算法,将得到的簇存放km对象中:
set.seed(22)
km = kmeans(customer,4)
获得km聚类算法聚类结果的基本统计信息:
cs = cluster.stats(dist(customer),km$cluster)
通常我们习惯使用within.cluster.ss和avg.silwidth这两个函数来验证聚类算法:
cs[c("within.cluster.ss","avg.silwidth")]
$within.cluster.ss
[1] 61.3489
$avg.silwidth
[1] 0.4640587
将得到的不同方法生成聚类结果的统计信息并以列表显示:
sapply(list(kmeans = km$cluster,hc_single = hc_single,hc_complte = hc_complte), function(c)cluster.stats(dist(customer),c)[c("within.cluster.ss","avg.silwidth")])
kmeans hc_single hc_complte
within.cluster.ss 61.3489 136.0092 65.94076
avg.silwidth 0.4640587 0.2481926 0.4255961
原理
聚类结果的验证通常采用两种技术:簇内距离和簇间距离。其中,簇间距离距离越大,聚类效果越好,而簇内距离越小,聚类效果越理想。使用fpc包中的cluster.stat函数来计算训练好的聚类对象的相关统计信息。
从输出结果可以得知,within.cluster.ss计算的是每个聚类内部的距离平方程,而avg.silwidth计算的是平均轮廓值。within.cluster.ss的计算结果体现了同一个簇之间对象的相关程度,该值越小,簇内对象的相关性越大。而avg.silwidth值则同时考虑了簇内对象的聚合度和簇内对象的聚合度簇间对象的分离度。数学上对于每个点x可以采用下列公式计算其轮廓系数:
轮廓系数(x) = [b(x) - a(x)]/max([b(x),a(x)])
其中,a(x)是点x到所有与它在同一簇中的其他点的平均距离,而b(x)则是点x到所有与它不在同一簇的点平均距离的最小值。通常轮廓系数取值范围为0~1,越接近于1说明聚类效果越好。
从最后产生的结果可以知道,在within.cluster.ss和avg.silwidth测量长度下基于最长距离的层次聚类算法的聚类效果要优于最短距离层次聚类算法和k均值算法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16