京公网安备 11010802034615号
经营许可证编号:京B2-20210330
举例讲解Python的lambda语句声明匿名函数的用法
所谓匿名函数,即是不需要定义函数,像表达式一样使用,不需要函数名(很多时候名字让我很困扰),一些简单的函数简单化, 举个例子
我需要两个整数相加的函数,通常是这么定义的
def add(x, y):
return x + y

很好的完成了我需要的功能, 但是我现在需要一个数字与字符串相加的函数
def addstr(x, y):
return x + str(y)
又一次完成了我的需求,但是 我突然需要两个整数相减,相除的功能这样函数就得 一直写下去, 但是使用lambda 匿名函数可以直接使用
# 相加的实现
f = lambda x, y: x + y
f_str = lambda x, y: x + str(y)
简化了操作 让函数更简单,但有个缺点就是 可维护性差, 当需要功能复杂时不建议使用
lambda语句的目的是由于性能的原因,在调用时绕过函数的栈分配。其语法是:
lambda [arg1[, arg2, ... argN]]: expression
下面举例来说明lambda语句的使用方法(无参数)。
Python匿名函数lambda举例(无参数)Python
# 使用def定义函数的方法
def true():
return True
#等价的lambda表达式
>>> lambda :True
<function <lambda> at 0x0000000001E42518>
# 保留lambda对象到变量中,以便随时调用
>>> true = lambda :True
>>> true()
True
# 使用def定义函数的方法
def true():
return True
#等价的lambda表达式
>>> lambda :True
<function <lambda> at 0x0000000001E42518>
# 保留lambda对象到变量中,以便随时调用
>>> true = lambda :True
>>> true()
True
下面再举一个带参数的例子。
Python匿名函数lambda举例(含参数)Python
# 使用def定义的函数
def add( x, y ):
return x + y
# 使用lambda的表达式
lambda x, y: x + y
# lambda也允许有默认值和使用变长参数
lambda x, y = 2: x + y
lambda *z: z
# 调用lambda函数
>>> a = lambda x, y: x + y
>>> a( 1, 3 )
4
>>> b = lambda x, y = 2: x + y
>>> b( 1 )
3
>>> b( 1, 3 )
4
>>> c = lambda *z: z
>>> c( 10, 'test')
(10, 'test')
# 使用def定义的函数
def add( x, y ):
return x + y
# 使用lambda的表达式
lambda x, y: x + y
# lambda也允许有默认值和使用变长参数
lambda x, y = 2: x + y
lambda *z: z
# 调用lambda函数
>>> a = lambda x, y: x + y
>>> a( 1, 3 )
4
>>> b = lambda x, y = 2: x + y
>>> b( 1 )
3
>>> b( 1, 3 )
4
>>> c = lambda *z: z
>>> c( 10, 'test')
(10, 'test')
是不是看起来代码更简洁,又不失可读性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20