
量化投资是一种怎样的体验
1.量化投资的定义
Quantitative,量化投资,它是一种相对于Fundamental(基本面投资)的一种投资方式。量化投资的研究对象是二级市场的金融资产,其中包括股票,债券,期货,期权和外汇等,但是不仅限于这些。利用统计和优化等数学办法构建模型,寻找相关的金融资产价格走势规律,之后将它转化成盈利。用一句话简述量化投资的定义就是,基于数学统计进行投资的一种投资方式。
2.投资的定义
在了解量化投资之前,首先应该知道什么是投资。简单的说,就是用资金去买资产,同时期望资金可以增值给自己带来更多的资金,这就是投资的含义。在投资中,有两个非常重要的因素——收益和风险。当然了,正常的人心里都希望可以拥有很高的收益,风险是越小越好,可是高收益和低风险就好像是我们小时候玩的跷跷板,无法满足平衡。高收益经常对立的都是高风险,而低风险常常就能获取很低的收益,这就是投资领域亘古不变的真理。
市场中,投资的方式非常多,例如:我们时常能听到的私募股权投资(Private Equity,PE)与风险投资(Venture Capital,VC),它们都属于一级市场投资,它们投资的标的是还没有上市的公司,利用帮助这部分比较早期的公司发展和壮大,在它们最后上市的时候利用其他的通道退出来,以此获利。而和一级市场投资相互对应的就是二级市场投资了,二级市场投资包括:基本面分析,技术面分析和量化投资等等。由此可知,量化投资只不过是投资领域的一个小组成部分而已。
3.量化投资的优势
要是讲述量化投资的优势都有什么,不同的人有不同的见解,可是小编今天整理了几条,基本上都是大家公认的优势。
(1)对于金融资产的风险,量化投资能够把它进行定量的分解和防范。这并不是代表基本面投资就不重视风险,而是基本面投资不会对投资过程的风险进行定量的分解,所以自然也不会采取相应的防范措施。同时量化投资能够利用统计的方法,把投资过程中存在的风险进行分解,并利用相应的金融衍生品进行对冲不想承担的风险,这也就是进行量化投资的私募基金经常被称为“对冲基金”的原因所在。
(2)量化投资能够运行低风险的投资策略。这种说法也并不是说,量化投资就一直是低风险的。事实上,量化投资的策略类型的种类非常的多,其中有的策略风险要比一级市场投资还要高,可是,量化投资拥有运行低风险的能力,这也是其他的投资方式没有的优势。原因就是像基本面投资和一级市场投资等等其他的投资方式,它们不会注意投资标的过程风险,所以在投资的过程中,就可能会出现很大的价格波动。此时,量化投资可以使用金融衍生品对冲之后,一定程度上能够平抑这种波动。
(3)量化投资本身拥有很高的收益风险比。量化投资的收益风险比其他的投资模式都要高,这也是量化投资本身的投资特点的反应。由于量化投资使用金融衍生品平抑了价格波动,所以过程风险也会一定程度的降低,自然而然的就对获取的更高收益风险比有利。这块要警戒大家一点,因为大多的像基本面投资等投资模式,不是很关注过程风险,所以用收益风险比来进行评价不同的投资模式,这种做法是非常的不公平的。至于“收益风险比”,小编也会在后面的文章中和大家详细的讲解。
(4)量化投资在避免投资的人为因素上,起到了一定的作用。量化投资主要依靠数学模型,在一定程度上,投资的过程和结果都是模型运行的结果,当中人的判断因素非常的少。所以,和其他投资模式相比,更加利于增强投资的一致性和减少人为因素造成的不必要影响。
4.量化投资的缺陷
人无完人,何况是模型呐?同样的,小编在这里列举的几条,都是大家公认的缺陷。
(1)量化投资很复杂和其专业性非常强,普通投资人不容易理解。同时量化投资策略种类非常的多,还有其中大部分都不利用复杂的统计优化知识,要想对普通人讲解清楚,非常的困难。在这里,小编只是进一点绵薄之力,期望让广大投资人尽量的多了解量化投资。
(2)从量化投资自身来讲,不会完全的发现市场存在的价值,给市场提供公平的定价。量化投资的优势是平抑市场的非理性波动,让市场回归理性,当和基本面投资等模式结合在一起的时候,才可以更好地为二级市场提供公平的定价。
(3)量化投资一不注意就会陷入历史数据陷阱。量化投资利用历史数据来捕捉统计规律。可是市场不可能会简单的重复。所以,一旦离开了对量化投资和市场自身的深刻理解,很容易就进入了数据陷阱中,对于潜藏在历史数据背后的规律就很难充分的挖掘出来。这也是大家对量化投资经常批判的一点,总是“看着后视镜开车”。
投资者一定要注意,不管是什么投资模式,全有优劣之分,不存在什么完美的投资模式。对于每一个投资者来讲,不存在最好的投资,只存在最适合自己的投资。但是什么样的投资最适合自己?这一点恐怕只有您自己最清楚了
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22