京公网安备 11010802034615号
经营许可证编号:京B2-20210330
风险模型为什么是量化投资成功的关键
量化投资要在市场中取得成功,建立风险模型进行有效风险控制是必不可少的一个环节。风险模型的建立是量化投资的关键,是持续获得稳定超额回报的基本保障,风险模型的有效程度直接决定量化投资的业绩。
稳健的回报产生惊人复利,因此通过风险模型规避回撤保护业绩非常重要,每一次的回撤都需要后期更高的涨幅才能回到前期高点。
风险模型是对组合结构的修正
对冲的基本操作是在多头部分构建股票组合,在空头部分通过卖空股指期货合约等衍生品进行反向操作,以降低组合波动风险。
对冲又分为简单对冲和风险模型对冲,目前市场上较多的对冲基金采取的是简单对冲,即简单选股直接叠加股指期货做空,由于多头股票组合与空头的股指期货合约不匹配,会导致行业风格等方面结构差异,带来风险;
风险模型对冲则是先通过风险模型对多头的股票组合作风险结构修正,尽量在结构上与做空的指数拟合,降低与指数的结构差异,然后再作对冲,会显著降低组合波动风险;
如上图,风险模型对冲示意中,经过风险模型处理后,多头组合的结构呈椭圆形与沪深300估值期货合约拟合,叠加对冲后,组合没有如简单对冲的上下突出的风险暴露。
主流的两大风险模型
基本面风险模型
基本面风险模型是目前被各类投资者广泛应用的风险模型,即从技术面、基本面角度分析多头股票组合未来的价格变动趋势,进而买入符合要求的股票同时卖出不符的股票。
统计层面风险模型
统计层面风险模型不是基于股票的基本面分析,而是密切跟踪市场短期风格切换,对运行结构的变化反应迅速,更好的保护Alpha收益。
双重风险模型保护让超额收益更稳定举例1
某行业或个股景气度下降,传统的基本面风险模型需等到定期报告发布,经营指标恶化后才能对行业或个股进行调整,但市场上总有先知先觉者,往往先于定期报告做出反应,统计风险模型即通过密切跟踪市场风格的短期变化,捕捉此类信息进行数理分析,快速调整。
举例2说人话!小明买了一辆新车,为了降低事故造成的损失,他买了交强险,可以对道路交通事故中造成的人员伤亡、财产损失提供及时和基本的保障。问题来了,车辆行驶中,即便再小心,也难免磕碰造成自身车辆损失,这时候只有交强险是不够的,如果再购买车辆损失险,那么有双重保障,小明的意外损失就大为降低了。

同理,在风险控制的过程中,仅仅使用一种风控模型,投资的安全性还不能得到有效保护。传统的组合构建通常采用单一基本面风险模型控制风险敞口,尽管能够在一定程度上控制市场风险,但是却面临着对市场变化反应迟钝的问题。如果同时再选择统计风险模型,可以确保组合在剧烈的市场风格切换时第一时间做出反映,通过双重风险模型的叠加,让投资组合的超额收益更加稳定
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08