
风险管理:量化投资的制胜基因
近些年,量化投资在国内开始了飞速发展的进程。数据显示,今年以来量化基金业绩表现相对稳定,尤其是二季度以来,近八成量化基金今年以来的回报跑赢大盘,受到市场追捧。
震荡市场下还能取得如此靓丽业绩,再次让投资者关注量化投资的重要性。各基金公司也纷纷开始投入大量人力、物力,在量化领域谋篇布局。
天时、地利兼备,而“人和”就成了各家公募基金角力之点。量化投资战国来临,棋局暗流涌动, “将”、”帅“、”车“、”炮“各归其位。优秀的人才,成了业内兵家必争之所在。
值得注意的是,在众多公募基金中,国金基金是第一家提出“量化运营中心平台+事业部 “制度的基金公司,开行业风气先河。作为60后基金公司,国金基金近年来坚持差异化发展路线,将量化投资作为公司发展战略之一,重兵布局。不仅在技术上投入千万巨资,还在人才引进上成就显著。
近期,中国量化投资研究院原常务副院长、清华大学深圳研究生院教授林健武加盟国金基金。作为中国量化投资的先行者,他拥有美国宾夕法尼亚大学系统工程博士学位,在高盛、摩根士丹利以及美国50大对冲基金之一的迈格尼塔投资公司长期担任资深量化投资分析师和全球量化投资交易总监等要职。回国归来,接受母校清华大学聘请,担任深圳研究生院教授、量化投资研究中心主任。
“学院派+实干派”复合型人才的加盟,让国金基金量化团队如虎添翼。
一个身具如此丰富履历的海归量化人,他眼中的中国量化市场是怎样的存在?纷纭市场中,中国量化投资的方向和机遇在何方?带着重重好奇,记者独家专访林健武,与之探讨海内外量化市场的差异和差距、中国量化市场的现状和未来。
海外经验的本土化落地
在当前国内量化投资刚起步的阶段,相当一部分公募基金管理人虽打着量化投资的旗号,但没有真正实现量化管理,更多是贴上基金经理主动择股的标签,其业绩也带有极强的高波动性与不确定性。如此“挂羊头卖狗肉”,和真正的量化投资相去甚远。严格来说,理想的量化模型,优势在于市场变化之时,内部就有自适应模块动态选择因子,调整参数。
曾有过多年海外量化投资经验的林健武,巧妙地为市场的各类投资工具做了比喻:加法=买股票,减法=融券,乘法=放杠杆(期货本身自带杠杆),除法=在公募基金层面称为减仓。目前中国资本市场加法较完整,其他数个参数在逐渐完善的过程。国内的数据和欧美相比,从类型上看已经非常相近,但质量上还有待提高。比如,国内会计审计和上市公司信息披露的透明度上,还有待完善。
林健武表示,时势造英雄,如此局面也为优秀团队提供了机会。
量化团队建设重在细节
采访中记者了解到,国金基金早在2013年就涉足量化投资领域,几年来一直厉兵秣马,等待时机。作为中国第一家将量化投资写进公司战略的公募基金公司,国金基金率先建立量化投资平台,秉承“专注、专业、专家”的理念,采用“量化平台+投资事业部”运作模式,致力于成为量化投资领域的佼佼者。
这几年,一批如林健武一样的海归量化人陆续归国,不少公募基金对他们伸出橄榄枝。林健武毫不讳言,国金基金的“平台机制+事业部”制度是促使他加入的重要原因之一。对量化投资人才而言,这种先进的管理机制,既为他们提供了用武之地,又为他们解决了后顾之忧。
据悉,国金基金新设量化研究部,由林健武教授担任国金基金量化研究总监。公司为量化研究部提供种子基金,供新进公司的量化人才实盘测试原有的和新开发的量化投资策略,经过3-12个月磨合成熟之后,再设立投资事业部。在过渡期内,他们还可以物色和培养未来事业部团队成员,相应的策略能够保持连续性,进一步保障了团队稳定。
简单来说,所谓“量化研究部”,即事业部孵化器。“一些成熟的团队会进入各个量化事业部,还有一部分人才还在创业初期,但已经有很好的理念,量化研究部作为孵化器,可以为这部分人才提供数据支持,使他们有机会发展成为成熟的团队。“
放眼业内,国金基金的孵化器机制也堪称革新之举。孵化器机制使投资更加丰富化,力争为投资人创造稳健收益。
风险控制的达摩之剑
近年来A股市场的波动行情和风格的不断切换,使得关注择股和行业配置的传统价值投资缺乏有效及时的风险响应体系。而量化投资的核心在于将国际前沿的数学金融分析技术应用于整个投资决策过程中,尤其是在市场系统风险判定上,通过仓位控制、对冲技术与超额收益股票组合配置,搭建股票池,充分发挥量化系统的客观优势,在有效控制风险的前提下,全面提升投资的稳定性与收益性。
林健武认为,量化投资是运用多种手段(仓位、分散性、投资时效性)进行严格的风控。他举例道,基金有很多的风控条款, 其实真正的量化产品内部的风控更加严格。最常见的限制单只股票持仓,量化产品也同样不会允许单只股票持仓超出一定范围。
不可否认,当下A股市场对于量化对冲来说是一个严峻的挑战,在市场的规则和流动性上需要更多适应。林健武认为,量化投资如果使用单一策略的团队,很难在市场频繁切换的环境中生存。
“现在大家注意到,很多资金从股票市场切换到商品性市场,从短期套利的投资趋向于中长期投资,这对于量化投资是很大的挑战。因为量化投资需要大量的历史数据,如果历史数据只有一小块,操作起来就会很难,未来在应用数据层面一定要拓展。“
“量化投资目前重点在于风险控制,只有生存下来才能迎接下一个春天。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08