
商业智能对企业发展的促进作用
传统的管理系统对企业的管理可以分为3个层次:战略管理、业务管理和作业管理。其中,战略管理是配置企业资源,建立并维持企业运营秩序,从宏观层面规划企业的发展方向及其路径;业务管理是对企业的资源、计划、供应链、客户关系等进行管理;作业管理是直接帮助员工处理业务数据。商业智能并非推翻传统的管理职能,而是以智能化的方式对现有管理模式进行改造,其目的是将人工智能和技术因素进行高效的智能整合,使企业变得更“聪明”。
商业智能虽然不能为企业带来直接的经济效益,但它为企业带来经过科学武装的管理思维,带来决策的快速性和准确性、发现问题的及时性以及认识潜在知识和规律的敏锐性。这些都是企业产生经济效益的基础和关键。
(一)决策支持系统智能化使企业的“大脑”更聪明
企业的“大脑”就是其决策层。决策支持系统服务于企业决策者,它的智能化能帮助决策者快速、准确、明智地进行决策,最终将知识转化为切实的利润。它具有如下功能。
1.赋予能力的功能
商业智能系统能让合适的角色在合适的场景、合适的时间里获取合适的数据和知识,充分发掘和释放人的潜能,并真正让企业的数据、信息转变为一种能够指导人行为的意念和能力,从以往“人找系统”转变为“系统找人”,体现了管理系统的最大价值与作用。商业智能这种赋予能力的功能不仅使决策者更敏感,决策更迅速、更果断,而且还支持和扩展员工的记忆力、洞察力、活动范围及决策和行动的权力。随着自动化功能完成越来越多的常规决策,更多的员工被授予了进行更高价值的决定并据以采取行动的权力,从而扩大了参与决策的员工的范围,提高了员工迅速采取正确行动的能力。
2.整合功能
决策支持系统的整合功能使决策者看问题更全面,决策更明智,减少或避免失误。商业智能能以一种符合企业需要的方式,跨越地区、企业、部门、业务单元和团队,将从前端到后端、从内部到外部的职能连接起来,以共享所有信息和想法,从而实现互惠互利。《从绿到金》的作者丹尼尔·C·埃斯蒂说:“企业在做决策时。不仅要考虑显而易见的金钱回报,也要把其他因素考虑在内,如提升品牌形象、公司声誉,提升员工士气等无形收益。如美国东北公用事业公司的环保团队在解决路线方面的环保问题时,不仅计算节省下来的成本。而且计算节约的管理时间,减轻的监管压力,以及其他的间接成本”。这样所形成的决策更积极稳妥。
3.质疑、创新功能
决策支持系统的质疑、创新功能使企业看问题更准确,决策更精明、更合理。商业智能能质疑现状,同时创造新的机会。它使企业的管理者不只是按照表面价值来看待任务,而是发掘出其中包含的机会:即如何以更低的成本、更快的速度、更高的质量完成任务;如何令客户更加满意;如何使投资更安全,等等。这使管理者能在质疑中不断以创新来获得差异化竞争优势。
4.预测功能
决策支持系统的数据库具有完备的分析能力,它提供了内置于执行分析任务的数据服务器中的嵌入式提取、转换和加载(ETL),联机分析处理(OLAP)以及数据挖掘、预测等功能。决策支持系统的预测功能使企业看问题更长远,决策更具前瞻性。商业智能不只是做出反应或者调整行动方案,还会驾驭和评估折衷方案。例如,很多企业把环境问题作为负担,而通过商业智能对环保投入进行预测就能知道,环保固然会导致成本增加和短期竞争力减弱,但是它也可以成为企业发展的机遇(比如企业通过节能减排,在短期内就能回收投资成本)。
(二)商业智能使企业的“神经”更健全
企业的“神经系统”就是管理信息系统,它的智能化就是信息系统和人工智能的完美结合(转变为商业智能),它是商业智能的核心。它像人的神经系统,把企业从上到下、从里到外有机地联系起来。商业智能的最大价值是以智能的方式改造管理体系,使企业从传统的经验化、制度化的管理模式逐渐向数字化的管理模式转变,从侧重技术到侧重业务的转变,进而给企业带来能力和绩效的提升。具体作用有如下几点。
1.增加利润
商业智能能帮助企业提升传统利润,榨干业务流程中的最后一滴水。美国得克萨斯大学Mc
Combs商学院对150家位列财富1000强的企业调查后发现,每年花很少的成本将共享数据容易管理的程度提升10%,就会使人均销售量提高55
900美元,实现销售量整体增长,从而获得巨大的收益。
2.帮助企业开源和节流
一是增加客户数量、改进关系、发现新市场以及开发新产品和服务;二是整合资源(包括有关的外部资源),优化资源和资本的配置;三是以符合其业务战略和目标的方式来管理成本;四是通过企业内部来压缩成本,减少浪费。
3.帮助企业进行主动式风险管理
管理信息系统智能化除了使内网和外网互通丰富、动态的信息(而不是静态的报告或者计算数据),还能提供主动警讯管理(通过事先设置警讯条件,系统可主动通过各种手段向管理人员提供报警通知),提高员工预测、识别、处理风险事件的能力,减少企业的漏洞,风险更可控,具有更大的确定性和安全性。
4.直接提高企业的绩效
通过信息化工具,商业智能可以提高企业的资金周转率和供应链响应效率。如某物流公司供应链使用商业智能模式以后,储运中心从100个左右降低到40个左右;区域运输费用和车队运输费用分别降低了21%和6.6%;库存降低了22%;碳排放量降低22%。
(三)商业智能使企业的“肌肉”更有力
企业的员工和业务系统组成企业的“肌肉”,业务系统的智能化可以使企业的“肌肉”更有力。智能业务系统直接帮助员工处理业务数据,使整个组织内部信息使用者能活用信息。员工在拥有人机结合智能后就形成了企业群体智能,弥补了人工智能的不足。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01