Python内置函数reversed()用法分析
这篇文章主要介绍了Python内置函数reversed()用法,结合实例形式分析了reversed()函数的功能及针对序列元素相关操作技巧与使用注意事项,需要的朋友可以参考下
reversed()函数是返回序列seq的反向访问的迭代器。参数可以是列表,元组,字符串,不改变原对象。
1》参数是列表
>>> l=[1,2,3,4,5]
>>> ll=reversed(l)
>>> l
[1, 2, 3, 4, 5]
>>> ll
<listreverseiterator object at 0x06A9E930>
>>> for i in ll:#第一次遍历
... print i,
...
5 4 3 2 1
>>> for i in ll:第二次遍历为空,原因见本文最后
... print i
...
2》参数是列表
>>> l=[3,4,5,6]
>>> ll=reversed(l)
>>> l
[3, 4, 5, 6]
>>> ll
<listreverseiterator object at 0x06A07E10>
>>> list(ll)#第一次
[6, 5, 4, 3]
>>> list(ll)#第二次为空,原因见本文最后
[]
3》参数是元组
>>> t=(4,5,6)
>>> tt=reversed(t)
>>> t
(4, 5, 6)
>>> tt
<reversed object at 0x06A07E50>
>>> tuple(tt)#第一次
(6, 5, 4)
>>> tuple(tt)#第二次为空,原因见本文最后
()
4》参数是字符串
>>> s='cba'
>>> ss=reversed(s)
>>> s
'cba'
>>> ss
<reversed object at 0x06A07E70>
>>> list(ss)#第一次
['a', 'b', 'c']
>>> list(ss)#第二次为空,原因见本文最后
[]
5》参数是字符串
>>> s='1234'
>>> ss=reversed(s)
>>> s
'1234'
>>> ss
<reversed object at 0x06A94490>
>>> ''.join(ss)#第一次
'4321'
>>> ''.join(ss)#第二次为空,原因见本文最后
''
为什么reversed()之后,第二次for循环或第二次list()或第二次tuple()或第二次join()得到的结果为空?我们以第2个例子具体说明一下:
That's because reversed creates an iterator, which is already spent when you're calling list(ll) for the second time.
The reason is that ll is not the reversed list itself, but a listreverseiterator. So when you call list(ll) the first time, it iterates over ll and creates a new list from the items output from that iterator.When you do it a second time, ll is still the original iterator and has already gone through all the items, so it doesn't iterate over anything, resulting in an empty list.
小编来翻译一下:
这是因为反向创建了一个迭代器,该迭代器在第二次调用列表(LL)时已经使用过了。
其原因就是ll不是反转列表本身,而是一个列表反向迭代器。所以当你第一次调用列表(ll),它会遍历ll并且创建一个新的列表从项目输出迭代器。当你再进行一次,ll仍然是原来的迭代器,已经经历了所有的项目,所以它不会再遍历什么,这就造成了空列表。
总结:reversed()之后,只在第一次遍历时返回值。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28在当今快速发展的数据驱动世界中,数据专员的角色变得愈发重要。无论是在企业决策、市场分析还是产品开发中,数据专员都扮演着不 ...
2024-10-27