
Python内置函数reversed()用法分析
这篇文章主要介绍了Python内置函数reversed()用法,结合实例形式分析了reversed()函数的功能及针对序列元素相关操作技巧与使用注意事项,需要的朋友可以参考下
reversed()函数是返回序列seq的反向访问的迭代器。参数可以是列表,元组,字符串,不改变原对象。
1》参数是列表
>>> l=[1,2,3,4,5]
>>> ll=reversed(l)
>>> l
[1, 2, 3, 4, 5]
>>> ll
<listreverseiterator object at 0x06A9E930>
>>> for i in ll:#第一次遍历
... print i,
...
5 4 3 2 1
>>> for i in ll:第二次遍历为空,原因见本文最后
... print i
...
2》参数是列表
>>> l=[3,4,5,6]
>>> ll=reversed(l)
>>> l
[3, 4, 5, 6]
>>> ll
<listreverseiterator object at 0x06A07E10>
>>> list(ll)#第一次
[6, 5, 4, 3]
>>> list(ll)#第二次为空,原因见本文最后
[]
3》参数是元组
>>> t=(4,5,6)
>>> tt=reversed(t)
>>> t
(4, 5, 6)
>>> tt
<reversed object at 0x06A07E50>
>>> tuple(tt)#第一次
(6, 5, 4)
>>> tuple(tt)#第二次为空,原因见本文最后
()
4》参数是字符串
>>> s='cba'
>>> ss=reversed(s)
>>> s
'cba'
>>> ss
<reversed object at 0x06A07E70>
>>> list(ss)#第一次
['a', 'b', 'c']
>>> list(ss)#第二次为空,原因见本文最后
[]
5》参数是字符串
>>> s='1234'
>>> ss=reversed(s)
>>> s
'1234'
>>> ss
<reversed object at 0x06A94490>
>>> ''.join(ss)#第一次
'4321'
>>> ''.join(ss)#第二次为空,原因见本文最后
''
为什么reversed()之后,第二次for循环或第二次list()或第二次tuple()或第二次join()得到的结果为空?我们以第2个例子具体说明一下:
That's because reversed creates an iterator, which is already spent when you're calling list(ll) for the second time.
The reason is that ll is not the reversed list itself, but a listreverseiterator. So when you call list(ll) the first time, it iterates over ll and creates a new list from the items output from that iterator.When you do it a second time, ll is still the original iterator and has already gone through all the items, so it doesn't iterate over anything, resulting in an empty list.
小编来翻译一下:
这是因为反向创建了一个迭代器,该迭代器在第二次调用列表(LL)时已经使用过了。
其原因就是ll不是反转列表本身,而是一个列表反向迭代器。所以当你第一次调用列表(ll),它会遍历ll并且创建一个新的列表从项目输出迭代器。当你再进行一次,ll仍然是原来的迭代器,已经经历了所有的项目,所以它不会再遍历什么,这就造成了空列表。
总结:reversed()之后,只在第一次遍历时返回值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22