
几种典型的BI的系统架构分析
随着商务智能(BI)理论的不断发展,商务智能的系统架构已经从单一的理论衍生出多种架构,如分布式商务智能架构,联合商务智能架构等。下图是BO公司定义的商务智能的基本架构,它是一种开放式的系统架构,可以分布式集成现有的系统。从这个架构中,我们可以比较清楚的看出目前商务智能架构的模式。包括数据层、业务层和应用层三部分。数据层基本上就是ETL过程。业务层主要是OLAP和Data Mining的过程。在应用层里主要包括数据的展示,结果分析和性能分析等过程。在实际应用中,由于每个公司的规模和组织架构的不同,在实施商务智能选择系统架构的时候要结合公司的特点,选者最合适的架构。下面就介绍几种现实系统中的几种BI架构。
BO公司定义的BI架构
1、简单的BI架构
这是目前比较常用的商务智能架构,所有的数据集中管理,集中分析,最大的优点是容易管理和部署,系统结构简单,容易维护,适用于小型商务智能系统。缺点是对于跨地域部署比较困难,数据实时性差,可扩展性差。
简单的BI架构
[page] 2、联合的BI架构(Federated BI Architecture)
这种架构比较符合实际的需求,能够集成自定义的数据仓库,外包的数据仓库,架构化的数据仓库,非架构化的数据仓库,分析系统等。应用于多数据仓库的集成和管理。特点是适用于加速time-to-market
,需要高层力量的驱动。成功关键因素:共享一致的的重要的Metrics度量和维度;需要提供统一的标准,拥有企业级的ETL工具和集成的元数据;需要贯穿于整个团队的沟通。联合的BI架构包括:集中逆向商务智能架构,分布逆向商务智能架构,集中顺序商务智能架构,分布顺序商务智能架构及混合架构等。
联合的BI架构(Federated BI Architecture)
2.1 集中逆向BI架构 (Centralized Upstream BI Architecture)
·通常用于中小组织
·需要良好的保管者的沟通
·需要高级执行者买进
·受限于逆向成功惯例(成功的变化是与任何单一实体的进行尝试是成反比的)
集中逆向BI架构 (Centralized Upstream BI Architecture)
[page] 2.2 分布式逆向BI架构 (Distributed Upstream BI Architecture)
·中小组织和大型组织都适用
·是大多数从下至上注重实效表现的逼近系统
·更多的考虑多数人意见
·更多的限制于大多数人意见
·实施团队需要良好的沟通
分布式逆向BI架构 (Distributed Upstream BI Architecture)
2.3 集中式的顺序BI架构 (Centralized Downstream BI Architecture)
·适用于长期数据仓库项目
·用于紧密配合多管道的在巨大组织中到处存在的DW/DM系统
·经常目标设定为特殊功能组织或行政中心
·需要高层在所有的拥有者进行决策
·需要为已有系统在实施团队和支持团队建进行良好的沟通
集中的顺序BI架构 (Centralized Downstream BI Architecture)
[page] 2.4 分布式顺序BI架构(Distributed Downstream BI Architecture)
·适用于大型多元化组织
·容易适应各种不同的冲突
·容易转换到不同的环境
·需要为已有系统在实施团队和支持团队间进行良好的沟通
分布式顺序BI架构(Distributed Downstream BI Architecture)
2.5 混合型BI架构 (Hybrid BI Architecture)
·比任何理想化模型更接近现实情况
·更适应自然的联盟
·元数据集成更具有挑战性
混合型BI架构 (Hybrid BI Architecture)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-04反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-04CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-04评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29