
3分钟告诉你量化投资为什么这么火
量化投资在海外发展有30年的历史,其投资业绩稳定,市场规模和份额不断扩大,得到越来越多投资人的认可。事实上,量化投资在国内并不新鲜,但真正的量化基金在国内的发展还处于初级阶段。
量化投资在国内的主要发展方向有三大类:传统的单品种CTA的趋势追随;不同市场和品种间的套利;还有利用基本面数据的宏观量化。随着各大类下面细分的各项交易策略的量化分析、交易的深入,我还是很看好量化本身在国内的发展。下面分几个方面介绍这三类:
1.Trade trend 或者trade mean-reverting的思路现在很多CTA在用,当然模型会复杂些,工具也多些(比如说考察两个index的spread,跨区等等)。这种相对低频的量化投资也被移植到中国二级市场上,并不断改进。
2.市场品种间的套利主要有下面5种:期货的期现套利(现货和期货之间存在一定的价差,一旦该价差与商品本身的持有成本发生较大偏离,可构造投资组合进行套利);相关性较强的品种间的统计套利(相关性较强的品种,进行协整检验,品种间价差在大概率下收敛,构造投资组合进行套利);可转债套利(转换期间的可转换债券与标的股票间存在溢价,因此可以通过卖出可转债并转股,同时融券锁定股票价格变化,第二天拿到股票同时平掉融券账户,获取价差);分级基金套利(母基金和子基金A、B份额价值发生偏差时,便可以通过申购或赎回操作,在母子基金间套利);ETF套利(ETF和其对应的标的成分股价值发生偏差时,就可以构造投资组合进行套利)。具体来说,已经成熟的套利策略原理都很简单,但是能否用该策略赚钱,则成败在于细节。中国的市场很不成熟,所以存在很多的套利机会,需要我们去发掘和实现。
3.宏观基金就是通过top-down的鸟瞰方式,相信市场上存在定价没有足够反应当前基本面及其变化趋势的地方,然后在市场多数人发现之前采取行动,等待获利时刻的到来。主要有两种风格,discretionary:比较自由靠经验判断,systematic:系统性讲究规律和纪律。
1). Discretionary:找到一个主题以及相关的观点,最终将其落实到具体投资工具。举个“主题-观点-工具”的例子,比如你判断中国经济要下行(主题),这意味着市场对商品和原油需求减少价格要下降(观点),你选择做空澳元或者产油国的股指期货(工具)。这种投资风格建仓的速度快,往往会重仓几样工具,持仓的时间可能非常灵活,从几天到几年。
2). Systematic风格其实和一般的量化投资是非常接近的,很多量化模型比如factor model也能得到应用。
风靡英美的高频交易在中国目前还不大行,因为手续费太高。美国的费用大概是100股/1手几毛钱,换算成人民币也就几块,比起国内现在的佣金费用低太多了。 但是知乎上也有人反对这个观点,认为股指期货纯高频也有人做,1分钟内上百笔单子,只是闷声发大财,只是手续费会高于净利润,甚至达到净利润的两倍,但是也是有利可图的。
另外,即使是中低频交易,比如股票交易,随着爬虫和自然语言分析的应用,事件驱动可以作为一个系统运行:新闻事件、社区舆情、突发情况等等都被爬虫和自然语言分析取代了,大数据处理能力比人脑快、准。本来分析师、交易员们可以五马长枪地点评波动率,Gvernment维稳,乌克兰动乱,但是最后的结果却常常是在电脑那边基于的参考权重相当的低,低得甚至可以忽略不计。甚至在前两年有量化小公司买入了一套系统可以直接分析CNN,BBC,路透,彭博,CCTV的新闻频道报道。
“这个行业目前在中国的现状,绝对是一群聪明绝顶的geeks抢占技术制高点的群雄逐鹿。而大部分从业人员,终将成为历史的尘埃,就像当年那一批批的互联网创业者炮灰。”但是,如果你已尽自己全力一搏,成与败于你来说真的那么重要么?”这个行业有的只是优胜劣汰,胜者为王。国内目前的机构基本上都有严重的缺陷,风险爆发是迟早的事儿,而且会越来越多,这跟之前积累的经验、管理框架体系、选人用人都有关系,无论是券商自营、资管,我们作为市场的直接参与者要感谢他们无私地为市场提供了流动性。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26