
3分钟告诉你量化投资为什么这么火
量化投资在海外发展有30年的历史,其投资业绩稳定,市场规模和份额不断扩大,得到越来越多投资人的认可。事实上,量化投资在国内并不新鲜,但真正的量化基金在国内的发展还处于初级阶段。
量化投资在国内的主要发展方向有三大类:传统的单品种CTA的趋势追随;不同市场和品种间的套利;还有利用基本面数据的宏观量化。随着各大类下面细分的各项交易策略的量化分析、交易的深入,我还是很看好量化本身在国内的发展。下面分几个方面介绍这三类:
1.Trade trend 或者trade mean-reverting的思路现在很多CTA在用,当然模型会复杂些,工具也多些(比如说考察两个index的spread,跨区等等)。这种相对低频的量化投资也被移植到中国二级市场上,并不断改进。
2.市场品种间的套利主要有下面5种:期货的期现套利(现货和期货之间存在一定的价差,一旦该价差与商品本身的持有成本发生较大偏离,可构造投资组合进行套利);相关性较强的品种间的统计套利(相关性较强的品种,进行协整检验,品种间价差在大概率下收敛,构造投资组合进行套利);可转债套利(转换期间的可转换债券与标的股票间存在溢价,因此可以通过卖出可转债并转股,同时融券锁定股票价格变化,第二天拿到股票同时平掉融券账户,获取价差);分级基金套利(母基金和子基金A、B份额价值发生偏差时,便可以通过申购或赎回操作,在母子基金间套利);ETF套利(ETF和其对应的标的成分股价值发生偏差时,就可以构造投资组合进行套利)。具体来说,已经成熟的套利策略原理都很简单,但是能否用该策略赚钱,则成败在于细节。中国的市场很不成熟,所以存在很多的套利机会,需要我们去发掘和实现。
3.宏观基金就是通过top-down的鸟瞰方式,相信市场上存在定价没有足够反应当前基本面及其变化趋势的地方,然后在市场多数人发现之前采取行动,等待获利时刻的到来。主要有两种风格,discretionary:比较自由靠经验判断,systematic:系统性讲究规律和纪律。
1). Discretionary:找到一个主题以及相关的观点,最终将其落实到具体投资工具。举个“主题-观点-工具”的例子,比如你判断中国经济要下行(主题),这意味着市场对商品和原油需求减少价格要下降(观点),你选择做空澳元或者产油国的股指期货(工具)。这种投资风格建仓的速度快,往往会重仓几样工具,持仓的时间可能非常灵活,从几天到几年。
2). Systematic风格其实和一般的量化投资是非常接近的,很多量化模型比如factor model也能得到应用。
风靡英美的高频交易在中国目前还不大行,因为手续费太高。美国的费用大概是100股/1手几毛钱,换算成人民币也就几块,比起国内现在的佣金费用低太多了。 但是知乎上也有人反对这个观点,认为股指期货纯高频也有人做,1分钟内上百笔单子,只是闷声发大财,只是手续费会高于净利润,甚至达到净利润的两倍,但是也是有利可图的。
另外,即使是中低频交易,比如股票交易,随着爬虫和自然语言分析的应用,事件驱动可以作为一个系统运行:新闻事件、社区舆情、突发情况等等都被爬虫和自然语言分析取代了,大数据处理能力比人脑快、准。本来分析师、交易员们可以五马长枪地点评波动率,Gvernment维稳,乌克兰动乱,但是最后的结果却常常是在电脑那边基于的参考权重相当的低,低得甚至可以忽略不计。甚至在前两年有量化小公司买入了一套系统可以直接分析CNN,BBC,路透,彭博,CCTV的新闻频道报道。
“这个行业目前在中国的现状,绝对是一群聪明绝顶的geeks抢占技术制高点的群雄逐鹿。而大部分从业人员,终将成为历史的尘埃,就像当年那一批批的互联网创业者炮灰。”但是,如果你已尽自己全力一搏,成与败于你来说真的那么重要么?”这个行业有的只是优胜劣汰,胜者为王。国内目前的机构基本上都有严重的缺陷,风险爆发是迟早的事儿,而且会越来越多,这跟之前积累的经验、管理框架体系、选人用人都有关系,无论是券商自营、资管,我们作为市场的直接参与者要感谢他们无私地为市场提供了流动性。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11