
3分钟告诉你量化投资为什么这么火
量化投资在海外发展有30年的历史,其投资业绩稳定,市场规模和份额不断扩大,得到越来越多投资人的认可。事实上,量化投资在国内并不新鲜,但真正的量化基金在国内的发展还处于初级阶段。
量化投资在国内的主要发展方向有三大类:传统的单品种CTA的趋势追随;不同市场和品种间的套利;还有利用基本面数据的宏观量化。随着各大类下面细分的各项交易策略的量化分析、交易的深入,我还是很看好量化本身在国内的发展。下面分几个方面介绍这三类:
1.Trade trend 或者trade mean-reverting的思路现在很多CTA在用,当然模型会复杂些,工具也多些(比如说考察两个index的spread,跨区等等)。这种相对低频的量化投资也被移植到中国二级市场上,并不断改进。
2.市场品种间的套利主要有下面5种:期货的期现套利(现货和期货之间存在一定的价差,一旦该价差与商品本身的持有成本发生较大偏离,可构造投资组合进行套利);相关性较强的品种间的统计套利(相关性较强的品种,进行协整检验,品种间价差在大概率下收敛,构造投资组合进行套利);可转债套利(转换期间的可转换债券与标的股票间存在溢价,因此可以通过卖出可转债并转股,同时融券锁定股票价格变化,第二天拿到股票同时平掉融券账户,获取价差);分级基金套利(母基金和子基金A、B份额价值发生偏差时,便可以通过申购或赎回操作,在母子基金间套利);ETF套利(ETF和其对应的标的成分股价值发生偏差时,就可以构造投资组合进行套利)。具体来说,已经成熟的套利策略原理都很简单,但是能否用该策略赚钱,则成败在于细节。中国的市场很不成熟,所以存在很多的套利机会,需要我们去发掘和实现。
3.宏观基金就是通过top-down的鸟瞰方式,相信市场上存在定价没有足够反应当前基本面及其变化趋势的地方,然后在市场多数人发现之前采取行动,等待获利时刻的到来。主要有两种风格,discretionary:比较自由靠经验判断,systematic:系统性讲究规律和纪律。
1). Discretionary:找到一个主题以及相关的观点,最终将其落实到具体投资工具。举个“主题-观点-工具”的例子,比如你判断中国经济要下行(主题),这意味着市场对商品和原油需求减少价格要下降(观点),你选择做空澳元或者产油国的股指期货(工具)。这种投资风格建仓的速度快,往往会重仓几样工具,持仓的时间可能非常灵活,从几天到几年。
2). Systematic风格其实和一般的量化投资是非常接近的,很多量化模型比如factor model也能得到应用。
风靡英美的高频交易在中国目前还不大行,因为手续费太高。美国的费用大概是100股/1手几毛钱,换算成人民币也就几块,比起国内现在的佣金费用低太多了。 但是知乎上也有人反对这个观点,认为股指期货纯高频也有人做,1分钟内上百笔单子,只是闷声发大财,只是手续费会高于净利润,甚至达到净利润的两倍,但是也是有利可图的。
另外,即使是中低频交易,比如股票交易,随着爬虫和自然语言分析的应用,事件驱动可以作为一个系统运行:新闻事件、社区舆情、突发情况等等都被爬虫和自然语言分析取代了,大数据处理能力比人脑快、准。本来分析师、交易员们可以五马长枪地点评波动率,Gvernment维稳,乌克兰动乱,但是最后的结果却常常是在电脑那边基于的参考权重相当的低,低得甚至可以忽略不计。甚至在前两年有量化小公司买入了一套系统可以直接分析CNN,BBC,路透,彭博,CCTV的新闻频道报道。
“这个行业目前在中国的现状,绝对是一群聪明绝顶的geeks抢占技术制高点的群雄逐鹿。而大部分从业人员,终将成为历史的尘埃,就像当年那一批批的互联网创业者炮灰。”但是,如果你已尽自己全力一搏,成与败于你来说真的那么重要么?”这个行业有的只是优胜劣汰,胜者为王。国内目前的机构基本上都有严重的缺陷,风险爆发是迟早的事儿,而且会越来越多,这跟之前积累的经验、管理框架体系、选人用人都有关系,无论是券商自营、资管,我们作为市场的直接参与者要感谢他们无私地为市场提供了流动性。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25