
3分钟告诉你量化投资为什么这么火
量化投资在海外发展有30年的历史,其投资业绩稳定,市场规模和份额不断扩大,得到越来越多投资人的认可。事实上,量化投资在国内并不新鲜,但真正的量化基金在国内的发展还处于初级阶段。
量化投资在国内的主要发展方向有三大类:传统的单品种CTA的趋势追随;不同市场和品种间的套利;还有利用基本面数据的宏观量化。随着各大类下面细分的各项交易策略的量化分析、交易的深入,我还是很看好量化本身在国内的发展。下面分几个方面介绍这三类:
1.Trade trend 或者trade mean-reverting的思路现在很多CTA在用,当然模型会复杂些,工具也多些(比如说考察两个index的spread,跨区等等)。这种相对低频的量化投资也被移植到中国二级市场上,并不断改进。
2.市场品种间的套利主要有下面5种:期货的期现套利(现货和期货之间存在一定的价差,一旦该价差与商品本身的持有成本发生较大偏离,可构造投资组合进行套利);相关性较强的品种间的统计套利(相关性较强的品种,进行协整检验,品种间价差在大概率下收敛,构造投资组合进行套利);可转债套利(转换期间的可转换债券与标的股票间存在溢价,因此可以通过卖出可转债并转股,同时融券锁定股票价格变化,第二天拿到股票同时平掉融券账户,获取价差);分级基金套利(母基金和子基金A、B份额价值发生偏差时,便可以通过申购或赎回操作,在母子基金间套利);ETF套利(ETF和其对应的标的成分股价值发生偏差时,就可以构造投资组合进行套利)。具体来说,已经成熟的套利策略原理都很简单,但是能否用该策略赚钱,则成败在于细节。中国的市场很不成熟,所以存在很多的套利机会,需要我们去发掘和实现。
3.宏观基金就是通过top-down的鸟瞰方式,相信市场上存在定价没有足够反应当前基本面及其变化趋势的地方,然后在市场多数人发现之前采取行动,等待获利时刻的到来。主要有两种风格,discretionary:比较自由靠经验判断,systematic:系统性讲究规律和纪律。
1). Discretionary:找到一个主题以及相关的观点,最终将其落实到具体投资工具。举个“主题-观点-工具”的例子,比如你判断中国经济要下行(主题),这意味着市场对商品和原油需求减少价格要下降(观点),你选择做空澳元或者产油国的股指期货(工具)。这种投资风格建仓的速度快,往往会重仓几样工具,持仓的时间可能非常灵活,从几天到几年。
2). Systematic风格其实和一般的量化投资是非常接近的,很多量化模型比如factor model也能得到应用。
风靡英美的高频交易在中国目前还不大行,因为手续费太高。美国的费用大概是100股/1手几毛钱,换算成人民币也就几块,比起国内现在的佣金费用低太多了。 但是知乎上也有人反对这个观点,认为股指期货纯高频也有人做,1分钟内上百笔单子,只是闷声发大财,只是手续费会高于净利润,甚至达到净利润的两倍,但是也是有利可图的。
另外,即使是中低频交易,比如股票交易,随着爬虫和自然语言分析的应用,事件驱动可以作为一个系统运行:新闻事件、社区舆情、突发情况等等都被爬虫和自然语言分析取代了,大数据处理能力比人脑快、准。本来分析师、交易员们可以五马长枪地点评波动率,Gvernment维稳,乌克兰动乱,但是最后的结果却常常是在电脑那边基于的参考权重相当的低,低得甚至可以忽略不计。甚至在前两年有量化小公司买入了一套系统可以直接分析CNN,BBC,路透,彭博,CCTV的新闻频道报道。
“这个行业目前在中国的现状,绝对是一群聪明绝顶的geeks抢占技术制高点的群雄逐鹿。而大部分从业人员,终将成为历史的尘埃,就像当年那一批批的互联网创业者炮灰。”但是,如果你已尽自己全力一搏,成与败于你来说真的那么重要么?”这个行业有的只是优胜劣汰,胜者为王。国内目前的机构基本上都有严重的缺陷,风险爆发是迟早的事儿,而且会越来越多,这跟之前积累的经验、管理框架体系、选人用人都有关系,无论是券商自营、资管,我们作为市场的直接参与者要感谢他们无私地为市场提供了流动性。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09