京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python实现优先级队列结构的方法详解
最简单的实现
一个队列至少满足2个方法,put和get.
借助最小堆来实现.
这里按"值越大优先级越高"的顺序.
#coding=utf-8
from heapq import heappush, heappop
class PriorityQueue:
def __init__(self):
self._queue = []
def put(self, item, priority):
heappush(self._queue, (-priority, item))
def get(self):
return heappop(self._queue)[-1]
q = PriorityQueue()
q.put('world', 1)
q.put('hello', 2)
print q.get()
print q.get()

使用heapq模块来实现
下面的类利用 heapq 模块实现了一个简单的优先级队列:
import heapq
class PriorityQueue:
def __init__(self):
self._queue = []
self._index = 0
def push(self, item, priority):
heapq.heappush(self._queue, (-priority, self._index, item))
self._index += 1
def pop(self):
return heapq.heappop(self._queue)[-1]
下面是它的使用方式:
>>> class Item:
... def __init__(self, name):
... self.name = name
... def __repr__(self):
... return 'Item({!r})'.format(self.name)
...
>>> q = PriorityQueue()
>>> q.push(Item('foo'), 1)
>>> q.push(Item('bar'), 5)
>>> q.push(Item('spam'), 4)
>>> q.push(Item('grok'), 1)
>>> q.pop()
Item('bar')
>>> q.pop()
Item('spam')
>>> q.pop()
Item('foo')
>>> q.pop()
Item('grok')
>>>
仔细观察可以发现,第一个 pop() 操作返回优先级最高的元素。 另外注意到如果两个有着相同优先级的元素( foo 和 grok ),pop操作按照它们被插入到队列的顺序返回的。
函数 heapq.heappush() 和 heapq.heappop() 分别在队列 _queue 上插入和删除第一个元素, 并且队列_queue保证第一个元素拥有最小优先级(1.4节已经讨论过这个问题)。 heappop() 函数总是返回”最小的”的元素,这就是保证队列pop操作返回正确元素的关键。 另外,由于push和pop操作时间复杂度为O(log N),其中N是堆的大小,因此就算是N很大的时候它们运行速度也依旧很快。
在上面代码中,队列包含了一个 (-priority, index, item) 的元组。 优先级为负数的目的是使得元素按照优先级从高到低排序。 这个跟普通的按优先级从低到高排序的堆排序恰巧相反。
index 变量的作用是保证同等优先级元素的正确排序。 通过保存一个不断增加的 index 下标变量,可以确保元素按照它们插入的顺序排序。 而且, index 变量也在相同优先级元素比较的时候起到重要作用。
为了阐明这些,先假定Item实例是不支持排序的:
>>> a = Item('foo')
>>> b = Item('bar')
>>> a < b
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unorderable types: Item() < Item()
>>>
如果你使用元组 (priority, item) ,只要两个元素的优先级不同就能比较。 但是如果两个元素优先级一样的话,那么比较操作就会跟之前一样出错:
>>> a = (1, Item('foo'))
>>> b = (5, Item('bar'))
>>> a < b
True
>>> c = (1, Item('grok'))
>>> a < c
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unorderable types: Item() < Item()
>>>
通过引入另外的 index 变量组成三元组 (priority, index, item) ,就能很好的避免上面的错误, 因为不可能有两个元素有相同的 index 值。Python在做元组比较时候,如果前面的比较以及可以确定结果了, 后面的比较操作就不会发生了:
>>> a = (1, 0, Item('foo'))
>>> b = (5, 1, Item('bar'))
>>> c = (1, 2, Item('grok'))
>>> a < b
True
>>> a < c
True
>>>
如果你想在多个线程中使用同一个队列,那么你需要增加适当的锁和信号量机制。 可以查看12.3小节的例子演示是怎样做的。
深入思考
函数 heapq.heappush() 和 heapq.heappop() 分别在队列 _queue 上插入和删除第一个元素, 并且队列_queue保证第一个元素拥有最小优先级(1.4节已经讨论过这个问题)。 heappop() 函数总是返回”最小的”的元素,这就是保证队列pop操作返回正确元素的关键。 另外,由于push和pop操作时间复杂度为O(log N),其中N是堆的大小,因此就算是N很大的时候它们运行速度也依旧很快。
在上面代码中,队列包含了一个 (-priority, index, item) 的元组。 优先级为负数的目的是使得元素按照优先级从高到低排序。 这个跟普通的按优先级从低到高排序的堆排序恰巧相反。
index 变量的作用是保证同等优先级元素的正确排序。 通过保存一个不断增加的 index 下标变量,可以确保元素按照它们插入的顺序排序。 而且, index 变量也在相同优先级元素比较的时候起到重要作用。
为了阐明这些,先假定Item实例是不支持排序的:
>>> a = Item('foo')
>>> b = Item('bar')
>>> a < b
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unorderable types: Item() < Item()
>>>
如果你使用元组 (priority, item) ,只要两个元素的优先级不同就能比较。 但是如果两个元素优先级一样的话,那么比较操作就会跟之前一样出错:
>>> a = (1, Item('foo'))
>>> b = (5, Item('bar'))
>>> a < b
True
>>> c = (1, Item('grok'))
>>> a < c
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unorderable types: Item() < Item()
>>>
通过引入另外的 index 变量组成三元组 (priority, index, item) ,就能很好的避免上面的错误, 因为不可能有两个元素有相同的 index 值。Python在做元组比较时候,如果前面的比较以及可以确定结果了, 后面的比较操作就不会发生了:
>>> a = (1, 0, Item('foo'))
>>> b = (5, 1, Item('bar'))
>>> c = (1, 2, Item('grok'))
>>> a < b
True
>>> a < c
True
>>>
如果你想在多个线程中使用同一个队列,那么你需要增加适当的锁和信号量机制。 可以查看12.3小节的例子演示是怎样做的。
heapq 模块的官方文档有更详细的例子程序以及对于堆理论及其实现的详细说明。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23