
Python实现优先级队列结构的方法详解
最简单的实现
一个队列至少满足2个方法,put和get.
借助最小堆来实现.
这里按"值越大优先级越高"的顺序.
#coding=utf-8
from heapq import heappush, heappop
class PriorityQueue:
def __init__(self):
self._queue = []
def put(self, item, priority):
heappush(self._queue, (-priority, item))
def get(self):
return heappop(self._queue)[-1]
q = PriorityQueue()
q.put('world', 1)
q.put('hello', 2)
print q.get()
print q.get()
使用heapq模块来实现
下面的类利用 heapq 模块实现了一个简单的优先级队列:
import heapq
class PriorityQueue:
def __init__(self):
self._queue = []
self._index = 0
def push(self, item, priority):
heapq.heappush(self._queue, (-priority, self._index, item))
self._index += 1
def pop(self):
return heapq.heappop(self._queue)[-1]
下面是它的使用方式:
>>> class Item:
... def __init__(self, name):
... self.name = name
... def __repr__(self):
... return 'Item({!r})'.format(self.name)
...
>>> q = PriorityQueue()
>>> q.push(Item('foo'), 1)
>>> q.push(Item('bar'), 5)
>>> q.push(Item('spam'), 4)
>>> q.push(Item('grok'), 1)
>>> q.pop()
Item('bar')
>>> q.pop()
Item('spam')
>>> q.pop()
Item('foo')
>>> q.pop()
Item('grok')
>>>
仔细观察可以发现,第一个 pop() 操作返回优先级最高的元素。 另外注意到如果两个有着相同优先级的元素( foo 和 grok ),pop操作按照它们被插入到队列的顺序返回的。
函数 heapq.heappush() 和 heapq.heappop() 分别在队列 _queue 上插入和删除第一个元素, 并且队列_queue保证第一个元素拥有最小优先级(1.4节已经讨论过这个问题)。 heappop() 函数总是返回”最小的”的元素,这就是保证队列pop操作返回正确元素的关键。 另外,由于push和pop操作时间复杂度为O(log N),其中N是堆的大小,因此就算是N很大的时候它们运行速度也依旧很快。
在上面代码中,队列包含了一个 (-priority, index, item) 的元组。 优先级为负数的目的是使得元素按照优先级从高到低排序。 这个跟普通的按优先级从低到高排序的堆排序恰巧相反。
index 变量的作用是保证同等优先级元素的正确排序。 通过保存一个不断增加的 index 下标变量,可以确保元素按照它们插入的顺序排序。 而且, index 变量也在相同优先级元素比较的时候起到重要作用。
为了阐明这些,先假定Item实例是不支持排序的:
>>> a = Item('foo')
>>> b = Item('bar')
>>> a < b
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unorderable types: Item() < Item()
>>>
如果你使用元组 (priority, item) ,只要两个元素的优先级不同就能比较。 但是如果两个元素优先级一样的话,那么比较操作就会跟之前一样出错:
>>> a = (1, Item('foo'))
>>> b = (5, Item('bar'))
>>> a < b
True
>>> c = (1, Item('grok'))
>>> a < c
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unorderable types: Item() < Item()
>>>
通过引入另外的 index 变量组成三元组 (priority, index, item) ,就能很好的避免上面的错误, 因为不可能有两个元素有相同的 index 值。Python在做元组比较时候,如果前面的比较以及可以确定结果了, 后面的比较操作就不会发生了:
>>> a = (1, 0, Item('foo'))
>>> b = (5, 1, Item('bar'))
>>> c = (1, 2, Item('grok'))
>>> a < b
True
>>> a < c
True
>>>
如果你想在多个线程中使用同一个队列,那么你需要增加适当的锁和信号量机制。 可以查看12.3小节的例子演示是怎样做的。
深入思考
函数 heapq.heappush() 和 heapq.heappop() 分别在队列 _queue 上插入和删除第一个元素, 并且队列_queue保证第一个元素拥有最小优先级(1.4节已经讨论过这个问题)。 heappop() 函数总是返回”最小的”的元素,这就是保证队列pop操作返回正确元素的关键。 另外,由于push和pop操作时间复杂度为O(log N),其中N是堆的大小,因此就算是N很大的时候它们运行速度也依旧很快。
在上面代码中,队列包含了一个 (-priority, index, item) 的元组。 优先级为负数的目的是使得元素按照优先级从高到低排序。 这个跟普通的按优先级从低到高排序的堆排序恰巧相反。
index 变量的作用是保证同等优先级元素的正确排序。 通过保存一个不断增加的 index 下标变量,可以确保元素按照它们插入的顺序排序。 而且, index 变量也在相同优先级元素比较的时候起到重要作用。
为了阐明这些,先假定Item实例是不支持排序的:
>>> a = Item('foo')
>>> b = Item('bar')
>>> a < b
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unorderable types: Item() < Item()
>>>
如果你使用元组 (priority, item) ,只要两个元素的优先级不同就能比较。 但是如果两个元素优先级一样的话,那么比较操作就会跟之前一样出错:
>>> a = (1, Item('foo'))
>>> b = (5, Item('bar'))
>>> a < b
True
>>> c = (1, Item('grok'))
>>> a < c
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unorderable types: Item() < Item()
>>>
通过引入另外的 index 变量组成三元组 (priority, index, item) ,就能很好的避免上面的错误, 因为不可能有两个元素有相同的 index 值。Python在做元组比较时候,如果前面的比较以及可以确定结果了, 后面的比较操作就不会发生了:
>>> a = (1, 0, Item('foo'))
>>> b = (5, 1, Item('bar'))
>>> c = (1, 2, Item('grok'))
>>> a < b
True
>>> a < c
True
>>>
如果你想在多个线程中使用同一个队列,那么你需要增加适当的锁和信号量机制。 可以查看12.3小节的例子演示是怎样做的。
heapq 模块的官方文档有更详细的例子程序以及对于堆理论及其实现的详细说明。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16数据分析师:数字时代的商业解码者 在数字经济蓬勃发展的今天,数据已成为企业乃至整个社会最宝贵的资产之一。无论是 ...
2025-06-16解锁数据分析师证书:开启数字化职业新篇 在数字化浪潮汹涌的当下,数据已成为驱动企业前行的关键要素。从市场趋势研判、用 ...
2025-06-16CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13CDA 数据分析师:数字化时代的关键人才 在当今数字化浪潮席卷全球的时代,数据已然成为驱动企业发展、推动行业变革的核心要素。 ...
2025-06-13CDA 数据分析师报考条件全解析 在大数据和人工智能时代,数据分析师成为了众多行业追捧的热门职业。CDA(Certified Data Analyst ...
2025-06-13“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-09