
为什么量化投资一定要多模型
有些新手会问量化投资为什么这么多模型,,为什么不找一个收益率最高的做?为什么不找一个夏普比率最高的做?我今天来分享一下为什么量化投资必须要多个模型。
首先看几个概念:收益和波动,赔率和概率,优化和过度拟合
收益和波动
“Outperforming the market with low volatility on a consistent basis is an impossibility. I outperformed the market for 30-odd years, but not with low volatility.” ---George Soros
“持续超越市场却保持低的波动性是不可能的事。我在30多年里超越了市场,但波动性却并不低。”---索罗斯
很多职业投资者的目标都是超越市场。但问题在于,大多数投资人都希望长期获得高回报并超越市场,但同时却厌恶短期的大幅度波动。遗憾的是,投资组合的低波动与超越市场的表现不可兼得。
作为衡量市场表现的标准,美国标准普尔500指数从1985年12月底到2000年4月底上涨很多,相当于把100块钱变成了687块钱。但巴菲特则相当于把100块钱变成了4605块钱,远远超越了市场。虽然巴菲特和索罗斯远远超越了市场,其波动性也非常大。超越市场越多的,其波动性也越大。可以说超越市场的代价之一就是大幅度的波动。
从实证的的角度看,很多表现优秀的基金超越市场不是持续稳定的超越,具有稳定的优势,而是在市场不好时超越,在市场狂热时表现一般,甚至逊色。换句话说,战胜市场不是多赢,而是少输。
概率和赔率
概率和赔率的组合就是期望,经常有人说量化朝着大概率的方向做,但有没有想过0.9概率为正但收益是10%,而0.1的概率为负但收益是-99%呢?其实,量化是朝着高期望的方向做,这个例子的期望收益是-0.9%,赌久了肯定亏干净。
很多策略在高夏普比率的背后,统计的时候经常会发生胜率低于50%的情况,背后的原因就是虽然胜率可能偏低,但每次失败后的回撤控制的好,而一旦策略成功后贡献的盈利比例很高,于是整体的期望值较高,符合量化投资选择策略的标准。
优化和过度拟合
通过对上面期望值的筛选后,初选出来的量化模型需要进一步优化,比如测试新参数、测试适应哪些行情等,通过测试不同参数可以得到对历史行情更为有效的策略。也可以根据2011-2013的数据测试出来的参数应用在2014的行情上,这样多次测试后总能挑选出一个比较优化的模型。
值得一提的是,回测策略最需要避免的问题是过度拟合,比如当拿到过去十年的数据后,大致使用10种方案进行回测后发现一种比较有效,然后以此为基础分析了10种改进,再选出一个进行改进,无数次改进后总能做到一个对过去数据无比有效的方案,可这种方案不会有任何参考价值,因为其对历史数据过度拟合了。
量化的本质
若能开发足够多的模型,每个模型分配一定比例的仓位,各自根据系统信号独自运作,那么整体资金曲线就不会大起大落。
对于每一个交易策略来看,要想获得高收益必定承受高波动,对其优化的时候两者一定无法兼顾,且时间轴上来看无法做到适应所有的行情。由于交易策略不会适应所有的市场行情,所以在某一个策略无效时,不会给整个资金带来致命损失,所以管理人要经常测试所有的模型,以及时调整参数、删减模型、增加模型。
文中第一部分论述高收益和低波动是矛盾的,第二部分讲概率和赔率的矛盾,第三部分讲优化与过度拟合的矛盾。所有想表达的,化作一句话就是没有一劳永逸的交易系统,追求在所有行情下都合适的交易系统是徒劳的。选择不同交易策略的时候最好使得其有一定的互补性,也就是降低其相关系数,这样多套系统同时运作会降低标准差,获取更高的夏普比率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22