
为什么量化投资一定要多模型
有些新手会问量化投资为什么这么多模型,,为什么不找一个收益率最高的做?为什么不找一个夏普比率最高的做?我今天来分享一下为什么量化投资必须要多个模型。
首先看几个概念:收益和波动,赔率和概率,优化和过度拟合
收益和波动
“Outperforming the market with low volatility on a consistent basis is an impossibility. I outperformed the market for 30-odd years, but not with low volatility.” ---George Soros
“持续超越市场却保持低的波动性是不可能的事。我在30多年里超越了市场,但波动性却并不低。”---索罗斯
很多职业投资者的目标都是超越市场。但问题在于,大多数投资人都希望长期获得高回报并超越市场,但同时却厌恶短期的大幅度波动。遗憾的是,投资组合的低波动与超越市场的表现不可兼得。
作为衡量市场表现的标准,美国标准普尔500指数从1985年12月底到2000年4月底上涨很多,相当于把100块钱变成了687块钱。但巴菲特则相当于把100块钱变成了4605块钱,远远超越了市场。虽然巴菲特和索罗斯远远超越了市场,其波动性也非常大。超越市场越多的,其波动性也越大。可以说超越市场的代价之一就是大幅度的波动。
从实证的的角度看,很多表现优秀的基金超越市场不是持续稳定的超越,具有稳定的优势,而是在市场不好时超越,在市场狂热时表现一般,甚至逊色。换句话说,战胜市场不是多赢,而是少输。
概率和赔率
概率和赔率的组合就是期望,经常有人说量化朝着大概率的方向做,但有没有想过0.9概率为正但收益是10%,而0.1的概率为负但收益是-99%呢?其实,量化是朝着高期望的方向做,这个例子的期望收益是-0.9%,赌久了肯定亏干净。
很多策略在高夏普比率的背后,统计的时候经常会发生胜率低于50%的情况,背后的原因就是虽然胜率可能偏低,但每次失败后的回撤控制的好,而一旦策略成功后贡献的盈利比例很高,于是整体的期望值较高,符合量化投资选择策略的标准。
优化和过度拟合
通过对上面期望值的筛选后,初选出来的量化模型需要进一步优化,比如测试新参数、测试适应哪些行情等,通过测试不同参数可以得到对历史行情更为有效的策略。也可以根据2011-2013的数据测试出来的参数应用在2014的行情上,这样多次测试后总能挑选出一个比较优化的模型。
值得一提的是,回测策略最需要避免的问题是过度拟合,比如当拿到过去十年的数据后,大致使用10种方案进行回测后发现一种比较有效,然后以此为基础分析了10种改进,再选出一个进行改进,无数次改进后总能做到一个对过去数据无比有效的方案,可这种方案不会有任何参考价值,因为其对历史数据过度拟合了。
量化的本质
若能开发足够多的模型,每个模型分配一定比例的仓位,各自根据系统信号独自运作,那么整体资金曲线就不会大起大落。
对于每一个交易策略来看,要想获得高收益必定承受高波动,对其优化的时候两者一定无法兼顾,且时间轴上来看无法做到适应所有的行情。由于交易策略不会适应所有的市场行情,所以在某一个策略无效时,不会给整个资金带来致命损失,所以管理人要经常测试所有的模型,以及时调整参数、删减模型、增加模型。
文中第一部分论述高收益和低波动是矛盾的,第二部分讲概率和赔率的矛盾,第三部分讲优化与过度拟合的矛盾。所有想表达的,化作一句话就是没有一劳永逸的交易系统,追求在所有行情下都合适的交易系统是徒劳的。选择不同交易策略的时候最好使得其有一定的互补性,也就是降低其相关系数,这样多套系统同时运作会降低标准差,获取更高的夏普比率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08