
为什么量化投资一定要多模型
有些新手会问量化投资为什么这么多模型,,为什么不找一个收益率最高的做?为什么不找一个夏普比率最高的做?我今天来分享一下为什么量化投资必须要多个模型。
首先看几个概念:收益和波动,赔率和概率,优化和过度拟合
收益和波动
“Outperforming the market with low volatility on a consistent basis is an impossibility. I outperformed the market for 30-odd years, but not with low volatility.” ---George Soros
“持续超越市场却保持低的波动性是不可能的事。我在30多年里超越了市场,但波动性却并不低。”---索罗斯
很多职业投资者的目标都是超越市场。但问题在于,大多数投资人都希望长期获得高回报并超越市场,但同时却厌恶短期的大幅度波动。遗憾的是,投资组合的低波动与超越市场的表现不可兼得。
作为衡量市场表现的标准,美国标准普尔500指数从1985年12月底到2000年4月底上涨很多,相当于把100块钱变成了687块钱。但巴菲特则相当于把100块钱变成了4605块钱,远远超越了市场。虽然巴菲特和索罗斯远远超越了市场,其波动性也非常大。超越市场越多的,其波动性也越大。可以说超越市场的代价之一就是大幅度的波动。
从实证的的角度看,很多表现优秀的基金超越市场不是持续稳定的超越,具有稳定的优势,而是在市场不好时超越,在市场狂热时表现一般,甚至逊色。换句话说,战胜市场不是多赢,而是少输。
概率和赔率
概率和赔率的组合就是期望,经常有人说量化朝着大概率的方向做,但有没有想过0.9概率为正但收益是10%,而0.1的概率为负但收益是-99%呢?其实,量化是朝着高期望的方向做,这个例子的期望收益是-0.9%,赌久了肯定亏干净。
很多策略在高夏普比率的背后,统计的时候经常会发生胜率低于50%的情况,背后的原因就是虽然胜率可能偏低,但每次失败后的回撤控制的好,而一旦策略成功后贡献的盈利比例很高,于是整体的期望值较高,符合量化投资选择策略的标准。
优化和过度拟合
通过对上面期望值的筛选后,初选出来的量化模型需要进一步优化,比如测试新参数、测试适应哪些行情等,通过测试不同参数可以得到对历史行情更为有效的策略。也可以根据2011-2013的数据测试出来的参数应用在2014的行情上,这样多次测试后总能挑选出一个比较优化的模型。
值得一提的是,回测策略最需要避免的问题是过度拟合,比如当拿到过去十年的数据后,大致使用10种方案进行回测后发现一种比较有效,然后以此为基础分析了10种改进,再选出一个进行改进,无数次改进后总能做到一个对过去数据无比有效的方案,可这种方案不会有任何参考价值,因为其对历史数据过度拟合了。
量化的本质
若能开发足够多的模型,每个模型分配一定比例的仓位,各自根据系统信号独自运作,那么整体资金曲线就不会大起大落。
对于每一个交易策略来看,要想获得高收益必定承受高波动,对其优化的时候两者一定无法兼顾,且时间轴上来看无法做到适应所有的行情。由于交易策略不会适应所有的市场行情,所以在某一个策略无效时,不会给整个资金带来致命损失,所以管理人要经常测试所有的模型,以及时调整参数、删减模型、增加模型。
文中第一部分论述高收益和低波动是矛盾的,第二部分讲概率和赔率的矛盾,第三部分讲优化与过度拟合的矛盾。所有想表达的,化作一句话就是没有一劳永逸的交易系统,追求在所有行情下都合适的交易系统是徒劳的。选择不同交易策略的时候最好使得其有一定的互补性,也就是降低其相关系数,这样多套系统同时运作会降低标准差,获取更高的夏普比率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25