京公网安备 11010802034615号
经营许可证编号:京B2-20210330
为什么量化投资一定要多模型
有些新手会问量化投资为什么这么多模型,,为什么不找一个收益率最高的做?为什么不找一个夏普比率最高的做?我今天来分享一下为什么量化投资必须要多个模型。
首先看几个概念:收益和波动,赔率和概率,优化和过度拟合
收益和波动
“Outperforming the market with low volatility on a consistent basis is an impossibility. I outperformed the market for 30-odd years, but not with low volatility.” ---George Soros
“持续超越市场却保持低的波动性是不可能的事。我在30多年里超越了市场,但波动性却并不低。”---索罗斯
很多职业投资者的目标都是超越市场。但问题在于,大多数投资人都希望长期获得高回报并超越市场,但同时却厌恶短期的大幅度波动。遗憾的是,投资组合的低波动与超越市场的表现不可兼得。
作为衡量市场表现的标准,美国标准普尔500指数从1985年12月底到2000年4月底上涨很多,相当于把100块钱变成了687块钱。但巴菲特则相当于把100块钱变成了4605块钱,远远超越了市场。虽然巴菲特和索罗斯远远超越了市场,其波动性也非常大。超越市场越多的,其波动性也越大。可以说超越市场的代价之一就是大幅度的波动。
从实证的的角度看,很多表现优秀的基金超越市场不是持续稳定的超越,具有稳定的优势,而是在市场不好时超越,在市场狂热时表现一般,甚至逊色。换句话说,战胜市场不是多赢,而是少输。
概率和赔率
概率和赔率的组合就是期望,经常有人说量化朝着大概率的方向做,但有没有想过0.9概率为正但收益是10%,而0.1的概率为负但收益是-99%呢?其实,量化是朝着高期望的方向做,这个例子的期望收益是-0.9%,赌久了肯定亏干净。
很多策略在高夏普比率的背后,统计的时候经常会发生胜率低于50%的情况,背后的原因就是虽然胜率可能偏低,但每次失败后的回撤控制的好,而一旦策略成功后贡献的盈利比例很高,于是整体的期望值较高,符合量化投资选择策略的标准。
优化和过度拟合
通过对上面期望值的筛选后,初选出来的量化模型需要进一步优化,比如测试新参数、测试适应哪些行情等,通过测试不同参数可以得到对历史行情更为有效的策略。也可以根据2011-2013的数据测试出来的参数应用在2014的行情上,这样多次测试后总能挑选出一个比较优化的模型。
值得一提的是,回测策略最需要避免的问题是过度拟合,比如当拿到过去十年的数据后,大致使用10种方案进行回测后发现一种比较有效,然后以此为基础分析了10种改进,再选出一个进行改进,无数次改进后总能做到一个对过去数据无比有效的方案,可这种方案不会有任何参考价值,因为其对历史数据过度拟合了。
量化的本质
若能开发足够多的模型,每个模型分配一定比例的仓位,各自根据系统信号独自运作,那么整体资金曲线就不会大起大落。
对于每一个交易策略来看,要想获得高收益必定承受高波动,对其优化的时候两者一定无法兼顾,且时间轴上来看无法做到适应所有的行情。由于交易策略不会适应所有的市场行情,所以在某一个策略无效时,不会给整个资金带来致命损失,所以管理人要经常测试所有的模型,以及时调整参数、删减模型、增加模型。
文中第一部分论述高收益和低波动是矛盾的,第二部分讲概率和赔率的矛盾,第三部分讲优化与过度拟合的矛盾。所有想表达的,化作一句话就是没有一劳永逸的交易系统,追求在所有行情下都合适的交易系统是徒劳的。选择不同交易策略的时候最好使得其有一定的互补性,也就是降低其相关系数,这样多套系统同时运作会降低标准差,获取更高的夏普比率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26