京公网安备 11010802034615号
经营许可证编号:京B2-20210330
编写量化策略需要注意的几个细节问题
量化平台的出现,省去了quanter们自己打数据结构的时间和精力,可以集中在策略的想法构建上。但量化平台虽然好,还是会有一些功能会受到限制,因此,有时候还是需要自己清洗数据和编写回测程序。这里总结一下在量化策略编写中需要注意的数据处理问题,供参考:
1.数据复权。在量化策略的编写中,是需要对原始的开盘和收盘价进行复权的,以处理因为分红、配股等因素造成的股价变动。很多量化平台都已经对开盘价和收盘价进行了复权处理,可以直接用,但自己进行数据清洗的时候,尤其是在计算日收益率的时候,一定要用复权价。
2.剔除涨停股票。量化策略在实盘跑的时候,可能会遇到各种各样的实际操作问题,比如反转策略,基本逻辑很简单,就是选好那些排序期累计收益率排名靠前的股票并买进持有,然而有可能面临的问题是,在建仓那天,已经选好的那些股票有可能会开盘涨停,根本没办法买进。所以,在自己编写量化策略回测的时候,要将涨停股票在买进的时候剔除,这样回测的结果才更加接近实际。
3.剔除停牌股票。在因子选股过程中,一般会有一个观测期(或者称为排序期),根据这个观测期内因子表现,来选择表现较好的股票来建仓。然而,可能遇到的问题是,在观测期内,有些股票会出现停牌,有的还会停牌好多天。在自己写策略的时候,要注意,在观测期内是需要把那些停牌时间较长的股票剔除掉的,因为停牌往往意味着会有重大信息发布,可能会对当前的选股因子产生较大影响。剔除方法也比较简单,例如观测期为90天,那么如果一只股票的停牌时间超过了90天的五分之一,即18天,那么就可以剔除它。
4.关于平仓平不掉的问题。编写好的量化策略,在实盘交易的时候有可能遇到这么一种情况,就是在想卖的时候卖不掉(比如跌停),还是例如反转策略,在一个持有期结束,准备进入下一个持有期的时候,是需要把现有仓位卖掉再换新的仓位,然而,如果遇到跌停,那么根本就平不掉。如果量化策略回测中没有考虑这种情况,就可能会跟实际情况有差异。应对策略也很简单,可以继续持有现在平不掉的股票到可以平掉的那一天再平掉,这就需要把回测代码再进一步细化了。幸运的是,这种问题属于比较细节的问题,平不掉的情况遇到的也不会太多,所以对回测结果也不会产生很大影响(不像交易费用那样影响巨大),在因子测试等简单回测中,不考虑这个问题应该没什么大碍。但如果真正实盘回测,我觉得还是有必要把这个问题用代码描述出来的,这样才能更接近实际交易。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20