
编写量化策略需要注意的几个细节问题
量化平台的出现,省去了quanter们自己打数据结构的时间和精力,可以集中在策略的想法构建上。但量化平台虽然好,还是会有一些功能会受到限制,因此,有时候还是需要自己清洗数据和编写回测程序。这里总结一下在量化策略编写中需要注意的数据处理问题,供参考:
1.数据复权。在量化策略的编写中,是需要对原始的开盘和收盘价进行复权的,以处理因为分红、配股等因素造成的股价变动。很多量化平台都已经对开盘价和收盘价进行了复权处理,可以直接用,但自己进行数据清洗的时候,尤其是在计算日收益率的时候,一定要用复权价。
2.剔除涨停股票。量化策略在实盘跑的时候,可能会遇到各种各样的实际操作问题,比如反转策略,基本逻辑很简单,就是选好那些排序期累计收益率排名靠前的股票并买进持有,然而有可能面临的问题是,在建仓那天,已经选好的那些股票有可能会开盘涨停,根本没办法买进。所以,在自己编写量化策略回测的时候,要将涨停股票在买进的时候剔除,这样回测的结果才更加接近实际。
3.剔除停牌股票。在因子选股过程中,一般会有一个观测期(或者称为排序期),根据这个观测期内因子表现,来选择表现较好的股票来建仓。然而,可能遇到的问题是,在观测期内,有些股票会出现停牌,有的还会停牌好多天。在自己写策略的时候,要注意,在观测期内是需要把那些停牌时间较长的股票剔除掉的,因为停牌往往意味着会有重大信息发布,可能会对当前的选股因子产生较大影响。剔除方法也比较简单,例如观测期为90天,那么如果一只股票的停牌时间超过了90天的五分之一,即18天,那么就可以剔除它。
4.关于平仓平不掉的问题。编写好的量化策略,在实盘交易的时候有可能遇到这么一种情况,就是在想卖的时候卖不掉(比如跌停),还是例如反转策略,在一个持有期结束,准备进入下一个持有期的时候,是需要把现有仓位卖掉再换新的仓位,然而,如果遇到跌停,那么根本就平不掉。如果量化策略回测中没有考虑这种情况,就可能会跟实际情况有差异。应对策略也很简单,可以继续持有现在平不掉的股票到可以平掉的那一天再平掉,这就需要把回测代码再进一步细化了。幸运的是,这种问题属于比较细节的问题,平不掉的情况遇到的也不会太多,所以对回测结果也不会产生很大影响(不像交易费用那样影响巨大),在因子测试等简单回测中,不考虑这个问题应该没什么大碍。但如果真正实盘回测,我觉得还是有必要把这个问题用代码描述出来的,这样才能更接近实际交易。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01