京公网安备 11010802034615号
经营许可证编号:京B2-20210330
过去1年大数据领域薪资有多高
互联网在经历前几年的繁荣之后,现在开始进入寒冬,资本家不再像以前那样大胆地投资,纷纷攥紧自己的口袋。但是从整个互联网行业来看,大数据却一枝独秀,逐渐崛起。
我们正处于一个大数据飞速发展的时代,我们所做的一切事,不论是在互联网中或者是互联网之外,都会留下数字的痕迹。比如刷卡购物,网络搜索,手机上网,乃至在网上每一个小小的点击都会被一一记录下来。各行各业,大数据技术应用也越来越广泛,对于大数据人才的需求也越来越大。
如果你学的是大数据,那么恭喜你,你的发展良机来了。你将有可能成为大数据工程师,走向人生巅峰。
在数据驱动的未来,大数据人才市场势必会越来越大,而现在仅仅是大数据起步的进阶阶段,现在入行正是恰逢其时。中国互联网行业正处于一个新的飞速发展时期,对人才的需求也在同步急剧增长。2017年,发展大数据产业被写入政府工作报告中,大数据开始不只是出现在企业的战略中,也开始出现在政府的规划之内,可以说是互联网时代的宠儿。
是不是总是听到身边人说大数据发展如何如何好,工资高,但是大数据薪资待遇到底是个什么样的情况呢?今天就结合一些数据来了解下大数据行业的工资待遇的真实情况。
大数据招聘网站工资待遇
下面是从拉勾网上查询的大数据人才的招聘信息,目前对于没有工作经验的大数据人才的薪资也在1万左右,同时携程、滴滴、百度等大型互联网企业也在招聘大数据人才,同时招聘的门槛比较低。
北京大数据工程师薪酬一览
hadoop工程师水平
北京hadoop平均工资:¥ 20130/月,取自 1734 份样本。
数据挖掘工程师
北京数据挖掘平均工资:¥ 21740/月,取自 3449 份样本,较 2017 年,增长 20.3%。
此外,C君采集到的数据还显示,在工龄三年以下的人群中,大数据工程师、AI 工程师、全部工程师的平均年薪分别为 29.22 万元、29.98 万元、23.73 万元;在工龄 8-10 年的人群中,三者的平均年薪分别达到了 44.23 万元、45.71 万元、39.91 万元。可见,在大数据领域,随着工作年限的增长,薪资增幅较大。
大数据之所以被寄予厚望,是因为数据已经逐渐成为企业的核心竞争力,通过分析、挖掘数据的价值,企业可提前获知客户需求,预测其消费习惯和趋势。让管理者的一切决断都有据可依,不再盲目,降低企业风险。
近两年,数字化转型浪潮席卷各行各业,越来越多的传统行业开始认识到数据的价值。
Informatica 前主席兼首席执行官苏哈比·阿巴斯曾坦言,信息时代唯一最有价值的资产就是数据,想要更好地了解客户、提高企业运营效率及业务灵活度都离不开数据的支撑。
据第三方机构预测,到 2020 年,每一位互联网用户每日就能产生 1.5GB 的流量,一家智能工厂每天将产生 1PB 的数据,而云视频服务提供商每日则将产生高达 750PB 的视频数据。
可见,未来数据规模将达到前所未有的数量级,企业对于数据的管理需求也将极大的提升,对于大数据人才更是如此。
在去年(2017),CSDN 做了一次开发者大调查,调查结果显示,企业构建大数据平台面临的主要问题是人才的缺失。当然,大数据应用规划与技术选型也是困扰企业的现实问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16