京公网安备 11010802034615号
经营许可证编号:京B2-20210330
几张图看懂区块链技术到底是什么
“区块链”的概念可以说是异常火爆,好像互联网金融峰会上没人谈一谈区块链技术就out了,BAT以及各大银行还有什么金融机构都在开始自己的区块链研究工作,就连IBM最近也成立了自己的区块链研究实验室,但其实区块链到底是什么?大家或许并不清楚,停留在雾里看花的状态。从今天开始,就让我们一起走进区块链,揭开区块链的神秘面纱吧!
取快链?你想说的是区块链吧?
要说清楚区块链,我们先来讲个故事。
你一定听说过三人成虎的故事吧?
假设一个人告诉你,不好了,大街上有只老虎,你相不相信?
我去,你咋不按常理出牌啊,你要说不相信!
重来!我们说的是真老虎!
Action!!!
好!非常好!!影帝级的演出!!!
继续,这时候换做一堆人告诉你这件事!
我们再换一种场景。
如果一个德高望重、你十分信任的老者告诉你这件事,你又会怎么想?
是的,这就是所谓的信任的力量。你不信任一个没有足够信用度的单独个体,
但你会信任一堆个体或者有足够信用度的单独个体。
在现实社会中,银行就是这个有足够信用度的个体(中心)。
但以银行等作为信用中介是需要成本的,
而我们普通大众就要为这庞大的信用成本买单。
所以才会造就金融业是最赚钱的行业。
要去除银行类等中心机构的信用背书?
那就可以用我们上面提到过的“一堆个体”,这也是区块链技术的核心。
区块链本质上是解决信任问题、降低信任成本的技术方案,
目的就是为了去中心化,去信用中介。
区块链是比特币的底层技术。
比特币(BitCoin)的概念最初由中本聪在2009年提出,你把它理解成数字货币即可。
我们以比特币交易为例来看看区块链具体是如何操作的。
1、把每笔交易在全网广播。让全网承认有效,必须广播给每个节点。
2、矿工节点接收到交易信息后,都要拿出账簿本记载该次交易。
一旦记录,就不可撤销,不能随意销毁。
矿工节点是通过电脑运行的比特币软件对交易的进行确认的。
为了鼓励矿工的服务,对于其所记录和确认的交易,
系统为矿工提供25个比特币作为奖励。(这个奖励数量,系统设定每4年减半)
奖励只有一份,那就看谁记录的快呗。
为了减少这种情况,系统会出一道十分钟的运算题,
谁能最快解出值,谁就将获得记录入账权利,并赢得奖励。
对了,这里可以给大家看一道据说是徐汇区幼儿园升小学的运算题。
别急啊,你试试看,我第一次反正是做错了。
……,好吧,我无力反驳。
说远了,我们再说回来。
前述区块链中所运用算法并不是简单的计算题,而是使用哈希散列(Hash)算法。
哈希散列是密码学里的经典技术,可以用来验证有没有人篡改数据内容。
3、获得记账权的矿工将向全网广播该笔交易,账簿公开,其他矿工将核对确认这些账目。交易达到6个确认以上就成功记录在案了。
矿工记录的时候,还会将该笔交易盖上时间戳,形成一个完整时间链。
4、当其它矿工对账簿记录都确认无误后,该记录就确认合法,矿工们就进入了下一轮记账权争夺战。
矿工的每个记录,就是一个区块(block),会盖上时间戳,每个新产生的区块严格按照时间线形顺序推进,
形成不可逆的链条(chain),所以叫做区块链(Blockchain)。
而且每个区块都含有其上一个区块的哈希值,确保区块按照时间顺序连接的同时没有被篡改。
这时候我们再看对区块链的原始定义就能理解了:区块链是一种分布式数据库,是一串使用密码学方法相关联产生的数据块,每个数据块都包含了一次网络交易信息,用于验证其信息的有效性和生成下一个区块。
若两个人同时上传,虽然这个概率很小,但是若发生,我们就看最后的区块链哪条更长,短的那条就失效。这就是区块链中的“双花问题”(同一笔钱花两次)。对于要制作虚假交易,除非你说服了全网里超过51%的矿工都更改某一笔账目,否则你的篡改都是无效的。
网络中参与人数越多,实现造假可能性越低。
这也是集体维护和监督的优越性,伪造成本最大化。
说服51%的人造假还是灰常灰常难的。
好了,我们总结下,区块链主要有以下核心内容:
1、去中心化
这是区块链颠覆性特点,不存在任何中心机构和中心服务器,所有交易都发生在每个人电脑或手机上安装的客户端应用程序中。
实现点对点直接交互,既节约资源,使交易自主化、简易化,又排除被中心化代理控制的风险。
2、开放性
区块链可以理解为一种公共记账的技术方案,系统是完全开放透明的,账簿对所有人公开,实现数据共享,任何人都可以查账。开放效果类似这样:
3、不可撤销、不可篡改和加密安全性
区块链采取单向哈希算法,每个新产生的区块严格按照时间线形顺序推进,时间的不可逆性、不可撤销导致任何试图入侵篡改区块链内数据信息的行为易被追溯,导致被其他节点的排斥,造假成本极高,从而可以限制相关不法行为。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20