
股票量化投资出现的主要原因分析
量化交易的出现离不开如下几个主要原因:现代金融理论的发展,计算机技术的普及和发展,以及交易成本的下降。而这些变化大部分都发生在最近30年内。
1、现代金融理论的发展
传统资产定价的理论框架:
传统资产定价主要基于现金流贴现法。企业的整体价值等于其股票和债券的价值之和。股票的价值等于其未来所有现金流的折现值,债券的价值则等于利息与到期本金 的折现价值。
以股息贴现模型(DDM)为例,计算一个公司股价,我们需要预测该公司将来派发的一系列股息,然后估算每年的折现率,把未来股息贴现成现值, 最后把净现值的全相加起来。这个方法听起来很简单,但实际操作起来相当复杂而且带有主观性。分析师预测一个季度的股息都经常搞错,准确预测将来所有股息更 是难上加难。预测未来折现率也有同样的问题。现代金融理论则另辟蹊径。
1960年代,威廉·夏普、林特纳等提出的CAPM定价模型,对资本市场均衡状态下的资产风险与预期收益率的关系给出了精确定义。根据CAPM模型,一个股票的预期收益率取决于它和市场的相关性(beta)和无风险利率(risk- freerate)。投资者不用复杂的现金流预测就能估算股票的价值。
马克维茨(HarryMarkowitz)在50年代创造性地提出了用均值方差最优 化的数学方法来选择最优投资组合。这个最优组合不再完全取决于一个股票的预期收益率,而且还和其风险,与其它股票的相关性,以及投资者对风险的喜好程度密 切相关。夏普和马克维茨因此研究同获1990年诺贝尔经济学奖。
现代金融理论对传统理论的主要推动作用包括:
a. CAPM等金融定价模型可以很快给成百上千股票估算预期收益率,而传统办法更费时费力;当然,传统方法准确度一般而言比较高。
b. 现代金融理论更强调风险对收益率的影响。最优投资组合往往投资于大量股票以降低组合风险,而传统投资往往只集中于几个或几十个预期回报率最高的股票,组合 波动率往往更高。我们可以举个简单例子看看风险对收益率的影响。假设有两个投资策略,策略A一天赚10%下一天赔5%,策略A一天赚6%下一天赔1%。这 两个策略赔和赚的概率都是50%,而且每天平均收益率都是2.5%,但是B的波动率要小得多。投资200天之后策略A复合收益率为81.6,策略B的收益 率为124.2,比A高50+%。
c.跳过了复杂易错的现金流预测模型。传统投资模型试图用严密的数学理论给资产定价,却忽视了现金流折现 模型中每个参数的估计都具有很大的随机性。参数估计一点小小的变化往往对最后的估值产生巨大的影响。两千年前的毕达哥拉斯曾经说过,上帝用数学法则创造了 世界。现代科学的发展却越来越发现其实完全确定的事物只是世界的一小部分。也许更精确的说法是:上帝用概率法则创造了世界,尤其是对于与人类行为有关的事物。
当然,这并不是说现代金融理论就一定强于传统理论。传统投资因为对个股分析更为透彻因此投资命中率hitrate更高。基于CAPM等 数学模型赚钱的方式不同。量化交易往往在短期内作出大量的交易。每一个交易的亏赢率虽然小于传统投资模型,但数千次交易之后,只要盈利交易多于亏损交易, 总体交易结果就是盈利的。
2、互联网兴起,计算机和金融的紧密联系
在过去的半个世纪里,计算机基本按照英特尔(Intel)的创始人之一戈登· 摩尔提出摩尔定律飞速发展:计算机硬件的处理速度和存储能力,每一到两年提升一倍。
2016年5月,《机构投资者》旗下出版物《阿尔法》公布的“2016年全球收入最高的对冲基金经理”排行榜显示,前十位收入最高的对冲基金经理中,有八位被归为量化基金经理,前25位有一半属于量化分析。这些当中没有一家基金公司参与因子投资,或者叫做smart beta投资,也没有一家基金应用了诺贝尔经济学家创造的理论。相反,这些上榜的基金依赖的是数学与计算机技术的结合。
计算机的兴起使得量化交易能够利用计算机技术来进行交易的证券投资方式。从庞大的历史数据中海选能带来超额收益的多种“大概 率”事件以制定策略,用数量模型验证及固化这些规律和策略,然后严格执行已固化的策略来指导投资,以求获得可以持续的、稳定且高于平均收益的超额回报。
3、交易费用的下降
全球范围内交易费用的下降已经持续了一段时间,在金融市场竞争的推动下,又开始出现继续下降的趋势。
以上三点是便是推动量化投资出现的主要原因。如今已是量化交易的天下,运用数学或者统计模型来模拟金融市场的未来走向,从而预估金融产品的潜在收益,这已经成为了投资界的“时尚”。所以,想要在投资领域大放异彩,除了掌握传统的金融理论,数学和计算机技术也是必不可少。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22