
股票量化投资出现的主要原因分析
量化交易的出现离不开如下几个主要原因:现代金融理论的发展,计算机技术的普及和发展,以及交易成本的下降。而这些变化大部分都发生在最近30年内。
1、现代金融理论的发展
传统资产定价的理论框架:
传统资产定价主要基于现金流贴现法。企业的整体价值等于其股票和债券的价值之和。股票的价值等于其未来所有现金流的折现值,债券的价值则等于利息与到期本金 的折现价值。
以股息贴现模型(DDM)为例,计算一个公司股价,我们需要预测该公司将来派发的一系列股息,然后估算每年的折现率,把未来股息贴现成现值, 最后把净现值的全相加起来。这个方法听起来很简单,但实际操作起来相当复杂而且带有主观性。分析师预测一个季度的股息都经常搞错,准确预测将来所有股息更 是难上加难。预测未来折现率也有同样的问题。现代金融理论则另辟蹊径。
1960年代,威廉·夏普、林特纳等提出的CAPM定价模型,对资本市场均衡状态下的资产风险与预期收益率的关系给出了精确定义。根据CAPM模型,一个股票的预期收益率取决于它和市场的相关性(beta)和无风险利率(risk- freerate)。投资者不用复杂的现金流预测就能估算股票的价值。
马克维茨(HarryMarkowitz)在50年代创造性地提出了用均值方差最优 化的数学方法来选择最优投资组合。这个最优组合不再完全取决于一个股票的预期收益率,而且还和其风险,与其它股票的相关性,以及投资者对风险的喜好程度密 切相关。夏普和马克维茨因此研究同获1990年诺贝尔经济学奖。
现代金融理论对传统理论的主要推动作用包括:
a. CAPM等金融定价模型可以很快给成百上千股票估算预期收益率,而传统办法更费时费力;当然,传统方法准确度一般而言比较高。
b. 现代金融理论更强调风险对收益率的影响。最优投资组合往往投资于大量股票以降低组合风险,而传统投资往往只集中于几个或几十个预期回报率最高的股票,组合 波动率往往更高。我们可以举个简单例子看看风险对收益率的影响。假设有两个投资策略,策略A一天赚10%下一天赔5%,策略A一天赚6%下一天赔1%。这 两个策略赔和赚的概率都是50%,而且每天平均收益率都是2.5%,但是B的波动率要小得多。投资200天之后策略A复合收益率为81.6,策略B的收益 率为124.2,比A高50+%。
c.跳过了复杂易错的现金流预测模型。传统投资模型试图用严密的数学理论给资产定价,却忽视了现金流折现 模型中每个参数的估计都具有很大的随机性。参数估计一点小小的变化往往对最后的估值产生巨大的影响。两千年前的毕达哥拉斯曾经说过,上帝用数学法则创造了 世界。现代科学的发展却越来越发现其实完全确定的事物只是世界的一小部分。也许更精确的说法是:上帝用概率法则创造了世界,尤其是对于与人类行为有关的事物。
当然,这并不是说现代金融理论就一定强于传统理论。传统投资因为对个股分析更为透彻因此投资命中率hitrate更高。基于CAPM等 数学模型赚钱的方式不同。量化交易往往在短期内作出大量的交易。每一个交易的亏赢率虽然小于传统投资模型,但数千次交易之后,只要盈利交易多于亏损交易, 总体交易结果就是盈利的。
2、互联网兴起,计算机和金融的紧密联系
在过去的半个世纪里,计算机基本按照英特尔(Intel)的创始人之一戈登· 摩尔提出摩尔定律飞速发展:计算机硬件的处理速度和存储能力,每一到两年提升一倍。
2016年5月,《机构投资者》旗下出版物《阿尔法》公布的“2016年全球收入最高的对冲基金经理”排行榜显示,前十位收入最高的对冲基金经理中,有八位被归为量化基金经理,前25位有一半属于量化分析。这些当中没有一家基金公司参与因子投资,或者叫做smart beta投资,也没有一家基金应用了诺贝尔经济学家创造的理论。相反,这些上榜的基金依赖的是数学与计算机技术的结合。
计算机的兴起使得量化交易能够利用计算机技术来进行交易的证券投资方式。从庞大的历史数据中海选能带来超额收益的多种“大概 率”事件以制定策略,用数量模型验证及固化这些规律和策略,然后严格执行已固化的策略来指导投资,以求获得可以持续的、稳定且高于平均收益的超额回报。
3、交易费用的下降
全球范围内交易费用的下降已经持续了一段时间,在金融市场竞争的推动下,又开始出现继续下降的趋势。
以上三点是便是推动量化投资出现的主要原因。如今已是量化交易的天下,运用数学或者统计模型来模拟金融市场的未来走向,从而预估金融产品的潜在收益,这已经成为了投资界的“时尚”。所以,想要在投资领域大放异彩,除了掌握传统的金融理论,数学和计算机技术也是必不可少。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29