京公网安备 11010802034615号
经营许可证编号:京B2-20210330
专业量化交易人士如何看待传统技术分析
首先需要说明的是,在不同的量化投资领域,技术分析的地位绝对是不同的。
在高频交易领域,技术分析的用处应该不大。Irene Aldridge的《High-Frequency Trading》中提到过两篇论文,指出技术分析可以帮助推测限价指令簿(Limit Order Book)。
对于量化选股,技术分析的用处也不会太大。
对于CTA(管理期货基金)来说,特别是Trend-following CTA来说,传统技术分析绝对是基石。
技术分析的优点很多:简单易行,资金容量大。更重要的是,在大尺度上技术指标永远不会失效,追涨杀跌是人类的本性。但是,技术分析的缺点也是明显:回撤大,修复期长,大尺度上同质化很严重。所以,对于CTA而言,你越是能够在技术分析以外找到稳定盈利的策略,技术指标对于你的重要性就越低,在组合中的权重就越低。如果完全无法在技术分析以外找到策略,饥三年,饱三年,技术指标能够保你不死。
还有一点就是技术指标量化后的参数调整,调整好了,基本上都能找到在回测上稳赚不赔的策略,但是一旦市场状态转化发生(Regime Switch),出了回测,一实盘模拟基本就废了。高频还可以通过data mining出个最优参数,中低频还是不要想了。
最后值得说的是,换个角度想,量化工具就是新时代的技术工具。现在种类繁多操作简单的技术工具,也不是一开始就有的,都是有人用的好逐渐推广的。
简单技术分析最后高度趋同带不来超额收益,量化工具也有这趋势。
目前的一些主流量化思路起码十年前都已经有对应的技术工具,只是缺乏公开版本。
见过一些老交易员写的小程序,包括一大堆VBA。
这些程序和VBA提供信号,交易员手动调仓。而有些品种上已经可以半自动化交易。
这些策略里面流动性跟踪,相关性配对套利,多因子选股等等已经全部有了。当然里面使用的数学模型和具体实现都非常粗糙,拍脑门参数何其多。。。。不过在十年前也是钵满盆满了。
可以说,现在做主流量化的一些模型,只是在吃人家吃剩下的,也不一定能保证吃得好,吃得妙,就不要嘲笑20多年前用技术指标的人了。
况且,因为技术指标失效就舍弃这种工具,还不如在当时的数据下研究下当时奏效的一些技术,说不定有助于我们找到一些别人没有发现的信息,那么绝对也值得去琢磨一二。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01