京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我们用大数据画了个圈,发现了城市的新边界
“首都北京,行政面积1.64万平方公里。”
“多大?”
“1.64万平方公里。”
“那是多大?”
比起行政面积,也许出行半径更能描述市民日常实际活动范围。滴滴媒体研究院利用滴滴出行平台订单数据对全国主要城市的出行半径进行“测量”,从一个侧面反映城市究竟有“多大”。
毫不意外的,北京的出行半径最大,31.7公里。也就是说,北京90%的出行订单的起点或终点在距离市中心(天安门)31.7公里的范围内,而从天安门开车到东六环,刚好是30公里。中国城市中,出行半径大于30公里的有4个:北京、上海、深圳和佛山。
全国主要城市出行半径排行
注:“出行半径”:若超过90%的出行起点或终点与城市中心的距离在R公里范围内,则定义城市半径为R(单位:公里),即大多数出行活动的起终点都在城市半径R范围内。
工作在北京东四环外传媒产业园的张扬,两年前把房子买在了南六环,每天开车上班单程需要近一个半小时。
上海的姗姗在市中心的一家日企工作,家住长宁区的她每天要乘地铁上下班,单程三站地,加上走路全程需要近40分钟。
一个城市有多大?看看上班族上下班要花的时间。这是衡量“城市有多大”的另一个维度:通勤。
如上所述的出行半径是一个静态的直线距离,它并不能体现出城市形态、城市规划、拥堵状况等因素。而平均通勤距离和时间则可以帮助我们融合更多的路面信息和生活体验,从而更好地感知一个城市到底有多大。
全国主要城市通勤距离&时间
**“通勤距离&通勤时间”:此处是指根据滴滴出行平台上打车出行数据测算的上下班通勤距离和时间,即工作日06:00-10:00和16:00-21:00期间通过滴滴顺风车和专快车来往于住宅小区和商务楼宇的订单的平均距离及时间,数据统计周期为2017年11月。
令人惊讶的是,广东东莞的平均通勤距离和时间分别为17.3公里和48.5分钟,超过了上海、广州、深圳这些一线城市,仅次于北京。早高峰期间,从东莞住宅区发出的订单中很大一部分会进入了深圳、广州、惠州等周边城市。这便不难理解,为何出行半径并不显著的东莞,会在通勤排行上如此高位。
出行半径、通勤距离&时间前十位
东莞北接广州,南连深圳,毗邻香港,是粤港澳大湾区的重要组成部分,据媒体报道,在东莞凤岗停满大量的粤B牌轿车,早高峰期间人流也几乎全部涌向深圳方向,珠三角一体化程度高,城市间连通性也极高,因而,在地域上仅用“行政区域”来描述生活区域便不够准确,这便引出另一个概念,“城市功能地域”。
四大城市功能地域
城市功能地域,是以24小时为周期的城市工作、居住、教育、商业、娱乐、医疗等功能所波及的范围。它或大于,也或小于本来的城市行政区域,由于如今城市群一体化进程不断加快,一个城市的功能区也很可能与相邻城市连成一片。
上图中呈现的功能地域是中国融合程度最高的四大城市群,以区域一为例,也许你生活在东莞,但每日的工作、娱乐范围,完全可能涵盖深圳、广州等城市。由此可见,在一定程度上,城市功能地域要比城市行政区更能准确描述你在这个城市可能的生活范围。
此时,让我们再回头考虑那个初始问题:“这个城市到底有多大?”,我们便有了一些更加贴合日常生活的数据:出行半径、通勤时间、通勤距离,以及城市功能地域。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15