
Python爬虫学习笔记之正则表达式
正则表达式的使用
想要学习 Python 爬虫 , 首先需要了解一下正则表达式的使用,下面我们就来看看如何使用
. 的使用这个时候的点就相当于一个占位符,可以匹配任意一个字符,什么意思呢?看个例子就知道
import re
content = "helloworld"
b = re.findall('w.',content)
print b`
注意了,我们首先导入了 re,这个时候大家猜一下输出结果是什么?因为 . 相当于一个占位符,所以理所当然的这个时候的输出结果是 wo 。
* 的使用跟上面的 . 不同,* 可以匹配前一个字符任意次数,看个例子
content = "helloworldhelloworld"
b = re.findall('w*',content)
print b
这个时候的输出结果是 ['', '', '', '', '', 'w', '', '', '', '', '', '', '', '', '', 'w', '', '', '', '', ''],可见是一个列表,长度和匹配的字符串一致,遇到要匹配的字符就打印出来。
.* 的使用.* 是一种组合使用,它可以尽可能多的匹配内容,比如下面这个例子
content = "helloworldhelloworldworld"
b = re.findall('he.*ld',content)
print b
它会输出 ['helloworldhelloworldworld'],它为什么不只打印一个 helloworld,为什么全部打印下来了?这就是一种贪心算法,也就是说我要找到最长的那个符合条件的内容。
.*? 的使用与 上面相反,这个符号会找到尽可能短的符合条件的内容,然后放到一个列表中去,如下所示
content = 'xxhelloworldxxxxhelloworldxx'
b = re.findall('xx.*?xx',content)
print b
输出的结果为 ['xxhelloworldxx', 'xxhelloworldxx'],可见,有个 xx 在前面好烦,怎么才能去掉呢?很简单,加个括号即可,括号加在哪?
content = 'xxhelloworldxxxxhelloworldxx'
b = re.findall('xx(.*?)xx',content)
print b
以上我们讨论的都是内容不包含换行符的情况,如果有了换行符结果又会发生什么变化呢?
content = '''xxhelloworld xx'''
b = re.findall('xx(.*?)xx',content)
print b
这个时候的输出结果为一个空列表,那怎么办啊?如果我们写网络爬虫的时候,网页源代码肯定不止是一行啊,如果换一行我们就读不出来了,那就好尴尬了,当然有解决办法~
content = '''xxhelloworld xx'''
b = re.findall('xx(.*?)xx',content,re.S)
print b
这样就可以了,还有一个非常方便的提取数字的技巧,如下所示
content = '''xx123456 xx'''
b = re.findall('(d+)',content,re.S)
print b
在网页源代码中爬取图片链接并下载
这篇文章中只是网络爬虫的第一步,所以讲解的也比较浅,所以现在我们先来利用正则表达式实现一个手动的网络爬虫,什么是手动的呢?就是我们自己把网页源代码复制下来,保存在一个 txt 文件中,然后利用正则表达式去过滤信息,然后去下载。
首先我搜索了一下 Linux 桌面,然后找到了如下一个网页
右击查看网络源代码,按 ctrl+f 搜索 img src 找到中间一部分进行复制,并且粘贴到一个 txt 文件中去,
然后就可以利用我们上述的知识去提取我们想要的信息,源代码如下
import re import requests
f = open('source.txt', 'r')
html = f.read()
f.close()
pattern = '<img src="(.*?)"'
pic_url = re.findall(pattern, html, re.S)
i = 0
for each in pic_url:
print 'Downloading :' + each
pic = requests.get(each)
fp = open('picture\\' + str(i) + '.jpg', 'wb')
fp.write(pic.content)
fp.close()
i = i + 1
首先打开我们保存网络源代码的 txt文件,进行读取,关闭文件流,然后就是利用正则表达式提取图片链接,最后利用requests 中的 get() 方法进行图片下载,注意这个 requests 不是Python 中自带的,我们需要下载指定的文件,然后将其放入到 Python 的Lib 目录下,此处下载,进入网站后,按ctrl+f 搜索关键词 requests 就可以看到如下页面
,可以看出,我们下载的是 .whl 后缀的文件,手动将其改成 .zip 后缀,然后解压,就可以得到两个目录,将名为 requests 的目录复制粘贴到上面讲的目录即可使用。
好了介绍完了,我们去看下运行结果
C:Python27python.exe E:/PythonCode/20160820/Spider.py
Downloading:http://n1.itc.cn/img8/wb/smccloud/fetch/2015/07/04/112732422680200576.JPG
Downloading :http://n1.itc.cn/img8/wb/smccloud/fetch/2015/07/04/112640070563900918.JPG
Downloading :http://n1.itc.cn/img8/wb/smccloud/fetch/2015/07/04/112547718465744154.JPG
Downloading :http://n1.itc.cn/img8/wb/smccloud/fetch/2015/07/04/112455366330382227.JPG
Downloading :http://n1.itc.cn/img8/wb/smccloud/fetch/2015/07/04/112363014254719641.JPG
Downloading :http://n1.itc.cn/img8/wb/smccloud/fetch/2015/07/04/112270662197888742.JPG
Downloading :http://n1.itc.cn/img8/wb/smccloud/fetch/2015/07/04/112178310031994750.JPG
Downloading :http://n1.itc.cn/img8/wb/smccloud/fetch/2015/07/04/112085957910403853.JPG
Process finished with exit code 0
这个时候就下载成功了,到我们的 picture 目录下去查看下载的图片
下载成功了。注意,自己找网页源代码实验的时候,最好不要让链接中带有中文,否则可能会出现乱码,由于我本身学习 Python 也才很短的时间,关于中文乱码问题,应对起来还不是那么得心应手,所以在此也就不再讲解,本文暂时告以段落,有意见或疑问可留言或者私聊我。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28