
浅析Python中的多条件排序实现
多条件排序及itemgetter的应用
曾经客户端的同事用as写一大堆代码来排序,在得知Python排序往往只需要一行,惊讶无比,遂对python产生浓厚的兴趣。
之前在做足球的积分榜的时候需要用到多条件排序,如果积分相同,则按净胜球,再相同按进球数,再相同按失球数。
即按积分P、净胜球GD、进球GS、失球GA这样的顺序。
在python中,排序非常方便,排序的参数主要有key、reverse。参数cmp不建议使用了,在python3.0被移除了,用参数key代替。
对于多条件排序,也非常简单,只需要记住下面这句话就行。 即参数key指定的函数返回一个元组,多条件排序的顺序将按照元组的顺序。
看了下面的代码你就明白了,下面是2010世界杯小组赛A组的积分榜。
teamitems = [{'team':'France' , 'P':1 , 'GD':-3 , 'GS':1 , 'GA':4},
{'team':'Uruguay' , 'P':7 , 'GD':4 , 'GS':4 , 'GA':0},
{'team':'SouthAfrica' , 'P':4 , 'GD':-2 , 'GS':3 , 'GA':5},
{'team':'Mexico' , 'P':4 , 'GD':1 , 'GS':3 , 'GA':2}]
print sorted(teamitems ,key = lambda x:(x['P'],x['GD'],x['GS'],x['GA']),reverse=True)
输出
[{'P': 7, 'GD': 4, 'GS': 4, 'GA': 0, 'team': 'Uruguay'},
{'P': 4, 'GD': 1, 'GS': 3, 'GA': 2, 'team': 'Mexico'},
{'P': 4, 'GD': -2, 'GS': 3, 'GA': 5, 'team': 'SouthAfrica'},
{'P': 1, 'GD': -3, 'GS': 1, 'GA': 4, 'team': 'France'}]
即小组排名是乌拉圭、墨西哥、南非、法国。
不过这样一个个取字典的键值有点啰嗦,用itemgetter更简洁优雅,上面那句代码可以用如下替换。
from operator import itemgetter
print sorted(teamitems ,key = itemgetter('P','GD','GS','GA'),reverse=True)
有的升序有的降序的情况下怎么多条件排序
之前在统计导出各区服玩家消费的时候需要进行升序降序混搭的多条件排序。
需求是这样的。区服从小到大排,如果区服相同,则按消费从大到小排。
实现方法是利用python的sort算法是稳定排序,对数据进行多次排序,先排次要条件,后排主要条件。
还有一种更简洁的一行流的方法,不过只有当待排数据是数值的时候才有效。此方法利用相反数的性质,在前面加个负号。
下面上代码。
#假设数据如下。
data = '''''
区服,玩家id,累积消费
3,a,2380
1,b,11900
4,e,3250
1,k,100
4,j,599
2,m,872
3,f,5560
1,y,2500
'''
items = [x.split(',') for x in filter(None,data.split('\n'))[1:]] #去掉空行和忽略首行并把字符串转成二维数组
#方法一
items.sort(key=lambda x:int(x[2]),reverse=True)#先排消费
items.sort(key=lambda x:int(x[0]))#然后排区服
print '\n'.join([','.join(x) for x in items])
print '-----------'
#方法二
items = sorted(items,key=lambda x:(int(x[0]),-int(x[2])))
print '\n'.join([','.join(x) for x in items])
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08