京公网安备 11010802034615号
经营许可证编号:京B2-20210330
有效管理大数据的主要策略
如何管理数据,并将数据从一点转移到另一点,将是美国政府面临的一大挑战。Szykman还提到了商务部在大数据中遇到的其他一些重要问题,主要为以下五个方面:

数据的真实性
大数据的重要性不仅是在于数据所生成的记录,更大的价值在于根据这些数据得出科研结果的“复制能力”。而从学术层面来看,这正是你证实所做工作价值的时候:其他人也可以对结果进行复制。另一方面,如果你丢失了得出科研结果的那些数据,这会降低结果的合理性。
数据工程师
研究领域的很多科学家正在研究大数据的精密使用,比如在预防医学、药品设计和胎儿检查领域如何开发基因数据。但Szykman担心的是,真正了都大数据技术构架的人太少。我们需要好好想想大数据及我们如何利用它,特别是在一些特殊领域。无论是政府的直接应用还是由政府出资科研,政府都在推动大数据这一前沿技术的发展。
大思路,早规划
在向开放数据转移的过程中,尽早搞清楚系统生命周期的要求显得越来越重要。在过去,没有做的一件事就是尽早研究开放数据在生命周期上的要求。数据模型、分享和信息的情况会越来越普遍,而系统性的战略会越来越多。在生命周期的早期,当我们成功安装新的系统或应用程序后,就应该尽早考虑该问题。
保密性vs.完整性
对于那些有科研基础的机构而言,大数据安全不仅仅是一个保密问题。数据的长期完整性也是企业更大的担忧。这是IT界一直为之努力的议题。有时候,我们过分关注结果而忽视了安全。人们有时会问:‘我们最终都要和公众分享这一数据,那安全有什么重要呢?’
这一问题的最佳答案来自科研机构,如NOAA。他们收集的基准数据正巧是美国气候变化政策备受争议所在。不管这些政策的政治倾向性如何,它们都对经济有重大影响。如果我们放弃了这些长期气候记录数据的安全性,那将造成严重后果。我们的确得好好想想大数据的问题。
制定基准线
由于很少存在类似的应用程序,难以获取相关信息或进行比照,因此有时候很难评定大数据以及其他高科技项目的开支和风险。出台开支和风险的基线,对大数据和数据中心来说都是一大挑战,因为还没有相关标准。操作一些简单事情有时候充满挑战,如计算数据中心的能耗。大数据基线不仅在基础设施层面,还包括数据包,都需要对未来资源进行更优规划。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26