
你真的懂得大数据吗
我们总能听到大数据这个词,但是你真的了解大数据吗?也许有人会回答“是”,但是真正能够做到了解的人却屈指可数。大数据究竟有哪些深奥的东西令人难以理解呢?
大数据之所以深奥难懂,唯一一点是因为:我们作为一个技术群体,并没有完全准备好去利用和管理大数据。也许你会说:“我们准备好了。”但事实上我们没有,原因如下:世界上百分之九十的数据都是在过去的两年里产生的,这使我们有些措手不及。每天都有大量的新数据从社交网站、工业传感器、卫星、手机、照片、文件以及其它地方产生。我们的数据以每天多于250兆字节的速度增长,或者说是多于20亿千兆字节。这些数据必须有地方可以储存,哪怕只是暂时储存,然后再从数据库和应用中发送出去以供分析。由于积累了太多的新数据,以至于对这些数据的存储、管理、以及分析的工作量是极大的。这就是我们很少有人真正了解大数据的原因。
这些海量数据使得我们能听到很多关于大数据的内容,而要弄明白它却很难。正如我之前所说,数据同我们的存储、搜索、分析、组织、归档和筛选能力息息相关,而其现在的情形是我们所不能完全掌控的。
我们都知道数据是如何产生的,也大体知道我们创造某些数据的原因以及要如何处理这些数据,但我们所不知道的是如何处理如此大量的数据。
事实上,我们甚至不确定如何去处理产生于大数据的元数据(metadata)。
在这里说明一下,你最近可能听说过很多关于元数据的事情,是关于美国国家安全局(NSA)所获取和分析的私人数据的。元数据就是有关数据的数据,这是个有点奇怪的概念。简单来说,元数据是对你的数据的一种描述,你可能还没意识到,你每时每刻都在使用元数据。比如,当你拍了一张数码照片时,元数据描述的就是关于这张照片的尺寸、拍摄日期、存储位置、文件大小、像素等内容。
其他类型的元数据还有:
创建该数据的方式
该数据的目的
创建日期和时间
该数据的创建者
该数据在一个计算机网络里的创建位置
所使用的标准
如果要检查一张图片的元数据,你只需右键单击该图片文件,选择“属性”,然后再选择“详细”选项卡。
你可以看到,元数据虽然不是数据本身,却也占用存储空间,它是有关数据的数据。所以我们可以把大数据和大元数据放在一起来谈。当你认识到有比数据本身更多的数据存在之后,你应该就能对我们的数据高速增长的原因有更为深刻的理解了。
需要指出的是,元数据不是大数据庞大的原因,而只是使大数据变得更大。
在了解了数据和元数据之后,我们可以研究大数据究竟是什么了。
大数据就是大量的数据,它是比我们以往所处理的数据还要多的数据,并且来源也更为广泛,它包含元数据。它多到难以想象、难以存储、难以分析,这也是大数据的主要问题所在。
你仍然会有疑问:是什么让大数据难以理解?
正如我前面所说,我们从不同的数据源创建数据:手机、卫星、电子传感器、文本信息、日志文件等等。来源如此之广的数据是非常复杂的。
更深一层解释,如果你的全部数据都是图片,那么你的数据就很简单。当你拥有不同种类的数据以及不同的数据源时,你的数据的复杂程度就增加了。假如你经营着一家物流公司,比如UPS快递,那么你就会有来自很多不同数据源的数据。我们仅从其中三点来看数据的复杂程度:雇员、货车和包裹。当然,他们实际上的数据远远复杂得多,我们只是选出比较典型的来举例。
货车的数据包括货车位置(GPS定位),燃油消耗量,维修记录,购买价格,保险记录,送货量,司机姓名等等。现在考虑一下每个领域所涉及的所有不同的数据点(data
points)。维修记录又包含着油量变化、轮胎、蓄电池、每个单独的可换零件、损坏、里程以及更多的内容。再用这些数据点乘以UPS现在所管理的数以万计的货车数量——96394辆。
再加上你能想象得到的所有雇员信息,包括货车司机、装卸工、维修人员、雇员的医疗记录、空车定位、设备定位、统一定位以及其它有关雇员的数据点,一共有397100名雇员。
还要加上第三个数据源的信息:包裹重量、原产地、保险、目的地、运输方式、尺寸、收货信息,以及出发地和目的地之间的中转地,每天有1630万包裹。
你可以看到数据点是如何随着UPS处理的数据量的增加而迅速增加的。UPS收集了很多有趣的不同数据点,那张单子上的统计数据并不是原始数据,而是经过分析之后的数据。那么可以想象数据库服务器的数量、存储量以及为生成那页单子而要耗费的精力有多少。
这就是大数据。你必须收集、存储、分析、组织、筛选和利用数据。就是从收集到筛选和利用的这个过程,是大数据不被人们所熟知的东西。大数据是复杂且难以管理的。
我们对大数据欠缺了解的地方正是对其的管理部分。只有极少数人知道如何管理如此庞大而复杂的数据。大部分企业已发展起了自己的拼凑解决方案,即通常每个部门试着用不同的形式管理自己的数据。其结果就是,不仅这些企业拥有大量的不同数据,而且数据用不同的数据技术存储在不同的位置,大数据变成了大混乱。
现在你应该对大数据的内涵、出处、庞大的原因以及所存在的问题有了更好的理解。
为什么你认为大数据难以理解,或者为什么你认为它好理解?你可以将你的看法通过留言评论回复给我们。
说明一下,我用UPS快递举例是因为我知道UPS能产生大量的数据,目前它管理着超过16万兆字节的数据量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29