京公网安备 11010802034615号
经营许可证编号:京B2-20210330
你真的懂得大数据吗
我们总能听到大数据这个词,但是你真的了解大数据吗?也许有人会回答“是”,但是真正能够做到了解的人却屈指可数。大数据究竟有哪些深奥的东西令人难以理解呢?

大数据之所以深奥难懂,唯一一点是因为:我们作为一个技术群体,并没有完全准备好去利用和管理大数据。也许你会说:“我们准备好了。”但事实上我们没有,原因如下:世界上百分之九十的数据都是在过去的两年里产生的,这使我们有些措手不及。每天都有大量的新数据从社交网站、工业传感器、卫星、手机、照片、文件以及其它地方产生。我们的数据以每天多于250兆字节的速度增长,或者说是多于20亿千兆字节。这些数据必须有地方可以储存,哪怕只是暂时储存,然后再从数据库和应用中发送出去以供分析。由于积累了太多的新数据,以至于对这些数据的存储、管理、以及分析的工作量是极大的。这就是我们很少有人真正了解大数据的原因。
这些海量数据使得我们能听到很多关于大数据的内容,而要弄明白它却很难。正如我之前所说,数据同我们的存储、搜索、分析、组织、归档和筛选能力息息相关,而其现在的情形是我们所不能完全掌控的。
我们都知道数据是如何产生的,也大体知道我们创造某些数据的原因以及要如何处理这些数据,但我们所不知道的是如何处理如此大量的数据。
事实上,我们甚至不确定如何去处理产生于大数据的元数据(metadata)。
在这里说明一下,你最近可能听说过很多关于元数据的事情,是关于美国国家安全局(NSA)所获取和分析的私人数据的。元数据就是有关数据的数据,这是个有点奇怪的概念。简单来说,元数据是对你的数据的一种描述,你可能还没意识到,你每时每刻都在使用元数据。比如,当你拍了一张数码照片时,元数据描述的就是关于这张照片的尺寸、拍摄日期、存储位置、文件大小、像素等内容。
其他类型的元数据还有:
创建该数据的方式
该数据的目的
创建日期和时间
该数据的创建者
该数据在一个计算机网络里的创建位置
所使用的标准
如果要检查一张图片的元数据,你只需右键单击该图片文件,选择“属性”,然后再选择“详细”选项卡。
你可以看到,元数据虽然不是数据本身,却也占用存储空间,它是有关数据的数据。所以我们可以把大数据和大元数据放在一起来谈。当你认识到有比数据本身更多的数据存在之后,你应该就能对我们的数据高速增长的原因有更为深刻的理解了。
需要指出的是,元数据不是大数据庞大的原因,而只是使大数据变得更大。
在了解了数据和元数据之后,我们可以研究大数据究竟是什么了。
大数据就是大量的数据,它是比我们以往所处理的数据还要多的数据,并且来源也更为广泛,它包含元数据。它多到难以想象、难以存储、难以分析,这也是大数据的主要问题所在。
你仍然会有疑问:是什么让大数据难以理解?
正如我前面所说,我们从不同的数据源创建数据:手机、卫星、电子传感器、文本信息、日志文件等等。来源如此之广的数据是非常复杂的。
更深一层解释,如果你的全部数据都是图片,那么你的数据就很简单。当你拥有不同种类的数据以及不同的数据源时,你的数据的复杂程度就增加了。假如你经营着一家物流公司,比如UPS快递,那么你就会有来自很多不同数据源的数据。我们仅从其中三点来看数据的复杂程度:雇员、货车和包裹。当然,他们实际上的数据远远复杂得多,我们只是选出比较典型的来举例。
货车的数据包括货车位置(GPS定位),燃油消耗量,维修记录,购买价格,保险记录,送货量,司机姓名等等。现在考虑一下每个领域所涉及的所有不同的数据点(data
points)。维修记录又包含着油量变化、轮胎、蓄电池、每个单独的可换零件、损坏、里程以及更多的内容。再用这些数据点乘以UPS现在所管理的数以万计的货车数量——96394辆。
再加上你能想象得到的所有雇员信息,包括货车司机、装卸工、维修人员、雇员的医疗记录、空车定位、设备定位、统一定位以及其它有关雇员的数据点,一共有397100名雇员。
还要加上第三个数据源的信息:包裹重量、原产地、保险、目的地、运输方式、尺寸、收货信息,以及出发地和目的地之间的中转地,每天有1630万包裹。
你可以看到数据点是如何随着UPS处理的数据量的增加而迅速增加的。UPS收集了很多有趣的不同数据点,那张单子上的统计数据并不是原始数据,而是经过分析之后的数据。那么可以想象数据库服务器的数量、存储量以及为生成那页单子而要耗费的精力有多少。
这就是大数据。你必须收集、存储、分析、组织、筛选和利用数据。就是从收集到筛选和利用的这个过程,是大数据不被人们所熟知的东西。大数据是复杂且难以管理的。
我们对大数据欠缺了解的地方正是对其的管理部分。只有极少数人知道如何管理如此庞大而复杂的数据。大部分企业已发展起了自己的拼凑解决方案,即通常每个部门试着用不同的形式管理自己的数据。其结果就是,不仅这些企业拥有大量的不同数据,而且数据用不同的数据技术存储在不同的位置,大数据变成了大混乱。
现在你应该对大数据的内涵、出处、庞大的原因以及所存在的问题有了更好的理解。
为什么你认为大数据难以理解,或者为什么你认为它好理解?你可以将你的看法通过留言评论回复给我们。
说明一下,我用UPS快递举例是因为我知道UPS能产生大量的数据,目前它管理着超过16万兆字节的数据量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15