京公网安备 11010802034615号
经营许可证编号:京B2-20210330
不关注人性的大数据,只是大忽悠_数据分析师
斯大林曾说:一个人的死是悲剧,一百万个人的死就是数据。如果拿医学界的术语,这是一种共情疲劳,如果换成时下最流行的术语,就是我们还无法处理大数据。
上周参加腾讯思享会,主题就是“大数据将如何影响社会变革”。场间针对大数据,提出了不同的声音,有“数据孤岛论”:现有的大数据是断裂而封闭的,比如腾讯说自己有某方面的全数据,但是否有百度,有阿里的?有“数据阴谋论”:现在在用大数据做事的就是大企业和政府机构,如果我们普通人不能掌握,那就是被一个无形的网所束缚、所监控。有从经济安全角度来看待大数据处理“黑箱”问题时的作用。也有从实践角度来谈论大数据在商界中的应用。但最触动我的是下面两个观点。这里简单摘编下以飧读者。
不关注人性的大数据是大忽悠---刘德寰
现在主流对大数据的理解是基于维克托的《大数据时代》进行二次改良。但这其中有两个十分值得商榷的观点,一是对抽样的极端蔑视,二是无原则的推崇相关。大数据是一种抛弃随机分析法(抽样调查)而对所有数据进行处理,那么这其中就存在一个由斯坦福Trevor Hastie提出的问题,如何在稻草里找一根针,前提是很多稻草长得和针一样。这是我们所有大数据研究面临的最大风险,数据太大之后带来的实际上是一个规律的丧失和失真,千万不要忽视了抽样。
抛开这两个观点,更为可怕的是现在的大数据鲜有关注人性。先举个生活中大家都遇到过的问题,一个人去网上买了5升的洗衣液,整个流程花费了不到1分钟。第二天浏览网页,他发现旁边的广告就是各种各样的洗衣液。这是什么?基于大数据的精准营销? 这恐怕是基于大忽悠的精准骚扰吧。 有点常识的人都知道,5升的洗衣液就算家里人再多也要用一个月,而且那个人流程这么短,肯定就是品牌忠诚者,推广的应该是什么时候那个品牌的洗衣液会打折之类的,这才是大数据。人类早期研究问题的方法就是靠体会、知觉、体验、内省等,这些看起来跟大数据无关的东西可能恰恰是大数据的核心,因为它是思想。
谷歌2008年弄了一个非常厉害的东西叫流感趋势预测,它预测的结果比美国疾病控制中心还准,当时轰动了全球。结果后来里面东西越来越乱,严重的高估了流感的状态。为什么?这就是刚刚说的维克多流派谈大数据的时候重相关不重因果。流感跟发病的时间点,跟美国比如中学生篮球赛那个时间点是完全一致的,这俩概念能有关系吗?问题是只要搜索中学生的篮球赛,就构成了流感预测的一个主要的词之一。类似的东西太多了,为什么?因为在谷歌预测的时候,没有找疾控公共卫生的专家,这些东西才是进行大数据预测的一个很重要的前提。
基因工程才是真正的大数据
人有多少细胞?量级为10的14次方。 其中一个细胞癌变就能导致你生命的完结。难道这不是大数据?真正的大数据是生命大数据,基因筛查可以消灭先天性疾病和预防癌症,人类想在千年之后复活亦不是难事。可是这样的基因科技发展却遭遇了无数现实瓶颈和伦理挑战。
问题1:从文明和宗教角度,基因工程造就的“完美人”是另一个物种,这样的“完美人”还是人类么?
问题2:基因问题与大数据问题其最大伤害是对人格独立性与隐私性的剧烈破坏。
文章来自:CDA数据分析师官网
针对这两个问题,华大基因研究院汪建院长给出他的解读:
你不做,欧洲人在做,美国人在做,用一种最悲观的说法,与其让白人把我们搞死不如我们自己把自己搞死。1993年我在西雅图的时候,老布什时代启动人类基因组计划,那个时候讨论地非常激烈。基因科学会对现行的人类道德、法律、生活生产医疗方式带来天翻地覆的变化,这可能很难以人的意志来改变,在这个时间维度上有点儿太快了,我们自己也感觉太快。当时我在科学院的时候就是因为这些事情争论不休,所以,我们才离开。离开以后,结果更快了,从几十个人几年时间变成几千人,明年可能就上万了,明年纯基础研究机构有上万人,可能对国家现在有关的科研机构的破坏性和挑战性就很大,产业的发展也会很大。但是它在某些程度上又顺应着民众的需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03