
Python语言描述最大连续子序列和
求最大连续子序列的和是一个很经典很古老的面试题了,记得在刚毕业找工作面试那会也遇到过同款问题。今儿突然想起来,正好快到毕业季,又该是苦逼的应届生们各种面试的时候到了,就给写了一些小代码解决这个问题。也希望各位找工作的同志们都拿到心目中理想的offer,从此以后,战胜高富帅,赢取白富美,走上人生巅峰。
1.问题描述
假设有一数组(python里为list啦)[1,3,-3,4,-6,-1],求数组中最大连续子序列的和。例如在此数组中,最大连续子序列的和为5,即1+3+(-3)+4 = 5
2.O(n2)的解法
最简单粗暴的方式,双层循环,用一个maxsum标识最大连续子序列和。然后每次判断更新。没有太多可以说的,直接上代码
def maxSum(list):
maxsum = list[0]
for i in range(len(list)):
maxtmp = 0
for j in range(i,len(list)):
maxtmp += list[j]
if maxtmp > maxsum:
maxsum = maxtmp
return maxsum
if __name__ == '__main__':
list = [1,3,-3,4,-6]
maxsum = maxSum(list)
print "maxsum is",maxsum
运行结果
maxsum is 5
3.O(n)解法
在任何讲动态规范的地方都能找到求最大连续子序列和的例子。具体来说,假设数组为a[i],因为最大连续的子序列和必须是在位置0-(n-1)之间的某个位置结束。那么,当循环遍历到第i个位置时,如果其前面的连续子序列和小于等于0,那么以位置i结尾的最大连续子序列和就是第i个位置的值即a[i]。如果其前面的连续子序列和大于0,则以位置i结尾的最大连续子序列和为b[i] = max{ b[i-1]+a[i],a[i]},其中b[i]就是指最大连续子序列的和。
def maxSum(list_of_nums):
maxsum = 0
maxtmp = 0
for i in range(len(list_of_nums)):
if maxtmp <= 0:
maxtmp = list_of_nums[i]
else:
maxtmp += list_of_nums[i]
if(maxtmp > maxsum):
maxsum = maxtmp
return maxsum
if __name__ == '__main__':
list_of_num = [1,3,-3,4,-6]
maxsum = maxSum(list_of_num)
print "maxsum is: ",maxsum
运行结果
maxsum is 5
总结
以上就是本文关于Python语言描述最大连续子序列和的全部内容,希望对大家有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01