
AI、大数据与云计算原来是这种关系
说到AI,总是不可避免的联想到大数据与云计算,这三者可谓相辅相成,唯有全部结合起来,才有可能成为真正的人工智能。当然,本文只是以一个普通人的视角来探寻这三者之间的联系。
一句话概括AI、大数据与云计算
简单来说,AI是基于计算机软硬件,通过模拟人类思考和智能行为的一种理论方法和技术。
而云计算则是将服务器、存储器、存储设备以及网络等资源打包成云端,为客户提供相关的按使用量付费的模式。
大数据则是将结构化数据和非结构化数据形成的所有数据整合起来,用以分析发现数据背后相关关系的信息资产。
从上面简单一句话的解释来看,就可以发现三者之间都有着一丝隐秘的关联。大数据便是AI智能化程度升级和进化的基础,拥有大数据,AI才能够不断的进行模拟演练,不断向着真正的人工智能靠拢。
三者存在紧密相关的联系
比如谷歌的AlphaGo就是这么一个典型的例子,通过大数据中的无数棋谱加以学习,才能够在后面进化到打败人类围棋高手的程度。
大数据与云计算则是原料与机器之间的关系,光有大数据,那么就只是一堆单纯的数据而已,而有了云计算,则可以对这些数据进行分析,变成有用的信息。
AI与云计算就是一体双生,两者都可以进行计算,AI可以进行学习,而云计算则可以进行分析,甚至可以说,两者的未来都是相同的。
三者之间的关系,在目前来看已经越来越模糊,他们的边界已经无法再进行清晰的定义。人工智能之所以大火,就是因为基于其关键的技术——深度学习,而这项技能,恰恰是在云计算与大数据日趋成熟之后才得到实质性进展的。
云计算与大数据的广阔市场
据相关数据显示,未来云计算市场规模有望达到1万亿美元,在近十年后发展成重塑企业思考和使用技术方式的风口,这也引得诸如微软、谷歌、阿里、腾讯等诸多大佬争相入局。并且到如今已经有非常多的厂商在这个领域中有所斩获,比如亚马逊的AWS、阿里巴巴的阿里云等等。
并且这些已经入局云计算行业的玩家,大部分都已经同时涉足人工智能以及大数据。而云计算如今达到每秒10万亿次的运算能力,足以模拟核爆、预测气候变化以及市场发展趋势,同样这么强大的运算力,也足以从大数据之中提取重要信息,并且整合归纳出一定的规律。
大数据,或者称之为巨量资料,指的是需要全新的处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。也就是说,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。而大数据思维创新应用者,通过对大数据的组合引用实现新的商业模式创新,获取潜在空白市场的收入。
从上述的定义来看,大数据与云计算的能力几乎是重叠了。大数据的核心在于为客户挖掘数据中蕴藏的价值,而不是软硬件的堆砌。
未来人类的数据将有90%都不再是传统的表格类数据,而是大数据中的视频、音频、图片、网页等非结构化的数据,大数据仍然在以超越想象的速度增长,其中相关的创新发现也将会层出不穷。
诞生于沃土之上的AI
在云计算与大数据成熟沃土上诞生的AI可谓是“天选之子”,AI主要包括计算机实现智能的原理、制造类似与人脑智能的计算机,是计算机能够实现更高层次的应用。并且AI还涉及到计算机科学、心理学、哲学以及语言学等学科。
从思维观点看,AI不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进AI的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,AI学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入AI学科,它们将互相促进而更快地发展。
AI目前市场最为广阔,作为替代人力劳动的工具,在一些场景中,AI的效率要比人类更高,并且还能保持稳定的质量以及更好的服务,从而创造更多的商业价值。
小结
AI在未来,应用市场将会是三者之内最大的,预计大部分人类的工作与生活中的琐事都可以交给AI来处理,届时人类社会也将会实现真正的按需分配,人类文明也将步上高速轨道。
AI、云计算以及大数据,发展到如今,它们的边界也越来越模糊,所产生的的职能重叠性也越来越高,相信在最后,这三者终将会融为一体,让电影中的人工智能走入现实。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30