
大数据与区块链:一对桴鼓相应的搭档
大数据能够对海量信息资产通过高效的处理模式来进行捕捉、管理和处理,而区块链本身作为分布式计算的一种,还有去中心化以及不可篡改等特性,两者之间,似乎天然就有合作的可能性。
大数据虽然能够收集海量数据并进行处理,但却无法保证数据的安全性,而作为虚拟货币底层技术的区块链,在这方面却是天赋凛然,自两者诞生之初,便有着强大的吸引力。
不完美的大数据
在前段时间,百度CEO李彦宏曾经说过,中国用户更倾向于用隐私换取便捷性。更准确来说,应该是中国用户被动甚至是被迫共享自己的隐私来换取便捷性。比如现在许多手机APP,强迫用户必须同意接受一些隐私采集条款,才能够正常使用,若不同意,则完全无法使用。
通常而言,应用软件采集用户数据,通过云计算,将对这些用户的大数据进行分类检索,提取有价值的信息,然后为用户提供便捷性服务。这种行为显然是双赢的,企业采集到了有效的数据,用户也体验到了更好的服务。
但是问题在于,李彦宏的说法是用户自愿用隐私换取便捷性。相信涉及到隐私的时候,没有多少用户是心甘情愿的,并且无论用户的隐私数据是否安全,随意获取这些数据都让人感到不适。联系到最近Facebook用户隐私数据泄露事件,大数据安全依然是严峻的问题。
并且收集到用户隐私数据之后,有可能还会被大数据杀熟,通过数据判断用户为高收入群体,在其购买以及消费产品时,将会比平常更加昂贵,届时由于更加成熟的大数据辨别机制,即使通过分享给好友来确认也无法察觉自己已经被“杀熟”。
其次,收集用户大数据之后,企业可以更加精准的推送相关广告,但是这些数据收集之后,用户完全没有任何受益,广告费用全部都被相关公司赚取,这相当于把用户的东西抢走之后,再加价卖回来,这种情况虽然很普通,但是真的合理吗?
让区块链为大数据加密
区块链则可以利用其自身特性,利用秘钥限制这些应用的访问权限,并且可以溯源追查自己的隐私数据都被用于哪些方面,可以做到用户自身完全掌控自己的数据,让用户更加方便的管理属于自己的权限,推动大数据的进一步增长。
就以上面的广告精准推送来说,用户可以通过区块链,完全把控自己的隐私数据,这也就意味着,用户可以决定自己的数据是否出售给相关广告商,广告的推送权也回归到用户的手中。并且如果用户同意分享自己的数据,那些广告的收入,也将会拿到属于自己的一份。
再举一个例子,通常而言,大数据在收集用户隐私数据之后,会对用户精准画像,不仅体现在广告的推送上,在日常视频、文章、购物,都会给用户进行相关的喜好的推荐,这些也无可厚非,但是在推荐这些内容的时候,相关企业都会掺杂私货,也就是在某几条内容中夹带盈利性质的广告。
而这些掺杂的广告大多数都属于三无产品,因此对于用户而言,购买其产品没有任何的保障。过去的魏则西事件,则是这种情况下典型的受害者。由于轻信了网站上推荐的医院广告,导致病情被耽误,最后病逝,这也是大数据没有得到有效监管的一个案例。
让数据的归属权回到用户手中
如果将区块链运用到大数据当中,魏则西这样的悲剧显然是能够避免的。用户通过区块链可以对自己的隐私数据进行跟踪、溯源,因此这种软文推送的权利掌握在用户自己手中,并且可以一眼就辨别哪些是软文,哪些又是真正的优质内容。
对于企业而言,把数据上传至区块链当中,这些数据会形成链条,具有真实、顺序、可追溯的特性,相当于已经从大数据中把有效数据进行了分类整理,也降低了企业对大数据处理的门槛,能够更快、更好的提取更多有利数据。
确切来说,区块链与大数据是一对相得益彰的伙伴,在收集数据上,区块链没有大数据如此擅长,而在数据安全上,大数据也没有区块链这般稳固。大数据的蓬勃发展也会相对带动区块链的进步,两者相辅相成,才会更好的为社会服务。
也许终有一天,我们可以完全掌握自己的信息,我们可以随意的查看我们真正想要的内容,不会在网上受到欺骗,不会在网络上被人带跑三观。届时,我们将在网络中找到最真实的自我。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29