
无量化不投资!用公式打败市场的量化投资,在中国能走多远?
2017年,我国资产管理规模突破100万亿元,私募基金迅速走上了快车道。究其原因,与私募基金积极备案登记,监管越来越规范,私募的良好业绩息息相关。从目前总体经济运行、就业形势、居民收入、社会大局等各方面来看,未来,私募投资必将迎来黄金发展期。
2017年11月,中信银行私人银行与胡润研究院联合发布《全球视野下的责任与传承—2017中国高净值人群财富管理需求白皮书》(Wealth Management: Trends of the Chinese HNWI 2017)。报告中提到,与2016年相比,高净值人群跨境金融投资产品的广度和深度均有所扩展、提高。
“外汇存款”、“股票”、“债券”、“基金”和“保险”是高净值人群跨境金融投资配置中最普遍的五种产品。
与人们旺盛的投资理财需求相比,专业机构提供的传统理财服务显得相对匮乏。(2017年6月,招商银行与贝恩公司联合发布的《2017中国私人财富报告》显示,2016年中国个人持有的可投资资产总体规模达到165万亿元人民币。)
中国目前拥有大量金融专业人才,以及世界上数一数二的大数据以及云计算等硬件设施,可以说,中国的量化投资正值风口。
从2016年开始,中国的量化投资普惠化也快速发展,前有传统金融机构提供的智能投顾服务,如广发证券、齐鲁证券等券商,招商银行、兴业银行等银行,后有上海量加科技公司等金融科技公司纷纷试水。
相对于主观交易,目前资金更加青睐于量化投资。在国内,不管是股票,还是期权、期货等都可以通过量化来做。
量化投资在海外的发展已有30多年的历史, 通常是指通过计量(Quantitative)的分析方式形成投资决策,并以计算机程序化发出买卖指令, 快速完成投资组合搭建与再平衡,以获取稳定收益为目的的交易方式 。
目前,市场上一大半的机会还是来源于基于基本面上的价值发现,而量化投资赚取的大多是市场空隙的钱。相对于传统的定型市场,量化投资就好比西医,他们都是有根据地对症下药。并且量化很有纪律性,所有的策略都是依据模型做出来的,相对于主观交易,可以克服人性的弱点,比如贪婪、侥幸心理等。
另一方面,如果市场上有上万只股票的时候,量化投资的信息处理能力也体现出它的优势,更快更准地抓住更多的投资机会;并且量化投资以数据为基础,从数据中挖掘未来的趋势,而且不单单依靠一个或几个股票,而且一组股票取胜!
市场中的大部分的量化投资公司往往都是以总经理负责交易负责策略的研发,然后带领了身边一帮研究员作为一种体系。就比如简雍资产,他们用的是一个更加科学的体系:总经理刘庆柏负责公司运营,但同时也有权在策略的测试、入库、上线以及投决会上进行投票。
简雍资产有非常资深的高校背景资源作为支持,复旦大学、普林斯顿、斯坦福等,这些学校或其中的教授们都与他们有着非常深层次的合作关系,尤其是以复旦大学大数据学院院长范剑青教授为首的支持团队。
范教授是简雍资产的首席策略顾问,大数据学院的副院长薛向阳教授是简雍资产的首席IT顾问,但是核心依然是投资这一块。
简雍资产投资这块的研究体系,目前是以国内郭克尖博士所带领的团队为主导,整体的研究体系是以原来法巴东京的自营团队、以李克辛教授带领的香港团队作为首要的策略引进,以范教授带领的教授团作为他们理论支持。
再来看看简雍资产的整体投资策略。
他们的策略比较丰富,主要是在三个方向进行策略配置:
因为简雍的传统优势,第一个是期货CTA,第二个是股票的短线多头,就是没有对冲的这一部分,第三个是在交易上花了重大的精力的, ALPHA加他们的配对的交易,是偏市场中性的策略,包括现在比较炙手可热的人工智能以及模糊识别。
除了投资策略,投资者当然更加关注的就是风控了。还是以简雍资产为例,他们的风控就是分三步。
第一步是从整个策略的研发上,无论他们在做任何一个策略的时候都会考虑到回撤和收益。第二步的风控是他们在公司整体的运营,这个运营是包括了他们的产品的设计以及公司的投资决策委员会的职能以及风控决策委员会的职能在内的。第三步的风控是从外部方面来考虑的。
一个真正想做好的私募公司,必然会很重视风控。专注于数据和算法研究量化投资基金的简雍资产,希望能够在严控风险的基础之上为客户带来长期稳定的收益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22