
深度学习入门视频课程学习笔记01
(一)深度学习问题面临的挑战
首先就由一只小猫带咱们走进深度学习的世界吧!
对于一个输入样本来说,深度学习和机器学习有着相同的目的,就是要把这个样本进行最准确的分类。咱们从肉眼看很容易这是一只猫,因为我们有着这么多年的积累常识嘛!但是计算机可不这么聪明一眼就能看得出来,在计算机中,一个图像是由像素点所构成的。这里可能有同学对于计算机视觉不是很了解,我简单的介绍下吧够用就行啦。像素点是一个从0到255范围内的一个正值,那么这个点的大小意味着这个点所对应区域的一个亮度。咱们也可以把一个图片当成一个三维数组比如[256,256,3]这里的256就分别代表了图片的长和宽的大小,最后的3就是图片的颜色通道,不知道通道是什么也不要紧,咱们暂且知道图片是矩阵组成的就好啦!
这个矩阵就是长的这个样子
那么我们所面临的挑战是什么呢?
我们要面对的可不仅仅是这样一只蹲在我们面前可爱的小猫,在实际中有着很多的可能性,比如光照强度,遮蔽程度,角度等等,这些就成为了我们深度学习任务的一个极大的挑战。
这些异形就是我们所面临的挑战
![]()
咱们深度学习要解决的最核心也是最基本的问题就是分类任务了,它也是咱们理解深度学习一个最好的入手点。
分类问题的常规套路
![]()
一个分类任务的常规套路大致可以分为三点:
(一)收集数据并给定标签:
就是我们要制作训练集了,包括data label这两部分,别小看收集数据了,这部其实很麻烦的,没有合适的数据很难训练出优秀的模型的,两个量都很重要,一个是质量一个是数量,对于我们深度学习来说,数量是很重要的,基本上都要以万为基本单位的。
(二)训练一个分类器:
这步可以说是很核心的一步,分类器的效果好坏决定了我们最终应用的效果,深度学习之所以效果要超过传统的机器学习在部分领域上比如计算机视觉,主要在于深度学习所训练的分类器更强大,这节课咱们只简单的介绍,干货还是在后面的。
(三)测试评估:
一个好的分类器,不是咱们通过大量的数据和一个强大的模型结构就可以的。在训练好分类器后,一个更重要的点就是我们要去测试和评估,比如准确率,召回率等衡量指标。我们要通过这些指标反复调节模型参数直到得到最好的模型无论是机器学习还是深度学习都离不开这三步,有了这样的一个流程下面我们就来看一看传统的机器学习算法是如何进行分类任务的。
![]()
这个就是咱们的数据库啦,简单说下这个数据库有10类标签,就是有10个类别,咱们接下来要做的就是训练一个分类模型啦。
接下来我的这个做法很多同学可能会说我很二!!!但是为了更好的给那些刚入门(坑)的同学更直观的表达,咱们简单的来乐呵下就好。
咱们这是在做啥子咧?就是。。。用每个图片的像素点所构成的矩阵去算和它像素点差异最小的那几个数据样本是哪几个。虽然做法很二,但这也是一个简单的K近邻问题,我们通过像素点的L1距离(这个看公式吧)去计算输入和所有训练集中的样本的距离然后找出最小的那K个,我们输入的样本的类别就是那K个里投票和啦。
这里我要强调的是,我不是用这种做法去说一个分类的流程,而是让大家看到咱们传统做法所需的一些东西。这里咱们在做分类的时候所需的参数有K近邻中的K的大小,还要选择距离公式也就是L的选择,这只是最少的参数选择,要是更复杂的模型我们所需选择的参数就更多了。不同的参数选择可以说对于最终的结果有着很大的影响,这也就是传统的机器学习算法很头疼的一个问题很多东西都需要咱们不断去尝试。那么深度学习一个很强大的地方就是我们并不需要设定很多这样的超参数。
接下来咱们再来强调下上面这张图,说这个的目的就是咱们的这门课程可能很多同学并没有太多机器学习和实战的基础,需要给大家对数据集的划分有个大致的概念。
我们在训练模型之前的数据准备要把整个数据分成两个大部分,一个是训练数据,一个是测试数据。理论上来说测试数据是很宝贵的,我们只有在最后的时候才能使用测试数据去评估,在训练的过程中决不允许出现测试数据。
还有就是我们还要把训练数据这个大部分切分成几个小份,比如5个小份,这么做的目的是我们还需要验证集,验证集的意思就是我们在训练模型的时候要不断的做一个模型自测试效果的过程,比如用其中的4小份作为训练数据,用另一小份作为验证数据。还有一个知识点要给大家强调下,我们在实际训练模型的时候更多的是使用交差验证,什么是交差呢?就是我们这次取这4个作为训练下次我们再取另外4个作为训练,这样就可以保证咱们训练模型的可靠性更大!
这节课也就差不多到这里了,打了这么多字,观众老爷们给个笑脸吧写的不好的地方还望海涵。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22