京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据中心人员应怎样进行管理
当今,企业对于数据中心的依赖性日益增加,越来越多企业的业务与后台系统密不可分。金融、证券、工业、能源、交通、医疗等行业的数据中心建设与升级也如火如荼。云计算时代的到来令数据中心越来越庞大。这样庞大的数据中心出现故障不可避免,据一项研究显示,数据中心大约70%的故障都是人为错误引起的,可见数据中心人员的工作失误是大多数据中心故障的罪魁祸首。而且在很多人为故障中,工作人员为避免承担责任,往往将故障都算到了数据中心的软件技术或相关设备身上,所以实际的数据中心人为故障会更多,更加触目惊心。
数据中心人员是指数据中心的技术人员、运维人员、管理人员以及提供服务的厂商人员。数据中心的工作人员一方面作为管理的主体,负责管理数据中心运维对象,另一方面也作为管理的对象,支持数据中心的稳定运行。这类对象与其他运维对象不同,具有很强的主观能动性,其管理的好坏将直接影响到整个数据中心的运营效率。数据中心是技术密集型的场所,需要数据中心的人员具备一定的专业技能,并要具备高度的责任心,这是作为一个合格的数据中心工作人员的基本条件。
从以往的数据中心人为故障来看,主要有两类方面的故障:一是人为的误操作导致故障。比如:由于工作不够细心,通过网线将网络设备两个端口连接成环,导致整个网络成环路,数据中心瘫痪。梳理数据中心设备时,不小心碰到电源线或者服务器的重启键等等,都会带来严重的后果。二是技术故障,由于技术不过关,配置错误,引入路由协议中断或者环路协议计算错误,软件运行异常等等故障出现。绝大多数的人为故障,主观上都不是故意的,均是无意中产生的。
数据中心以人为本,如何才能有效避免数据中心的这些人为故障呢? 下面将对数据中心人员的管理之道进行阐述,积极的对数据中心人员进行有效管理。从技术和管理两个层面加强对人的管理,减少人为故障。
对于非技术类的人为故障
通过考核、监控、管理提升数据中心人员的工作积极性,对数据中心人员的日常维护工作进行考核,增强数据中心人员的工作责任心,有奖有罚。让数据中心的每个人都清楚,如果一旦发生这些人为操作故障,将意味着失去工作或严重的罚金。数据中心的日常检查要有完整记录,每个人的工作都要有详细记录。制定严格的各项规章制度,严禁在数据中心内抽烟、玩游戏和禁止随意操作厂家设备,严禁在数据中心访问与工作无关的网站。
对需要进入数据中心设备区进行操作人员,要有经验丰富,对机房环境熟悉的技术人员陪同,避免发生意外。对进入数据中心设备区的人员进行严格管理,进入设备区的人员的姓名和工作目的都要有记录,并得到相关主管的批准,出入机房所携带物品应严格登记,这样才能最大程度的避免非技术的人为故障。数据中心人员要有吃苦的精神,有时还需要做一些体力劳动。如果没有点吃苦的精神是不可能胜任的。一般的数据中心都需要24小时常年不间断向外提供服务,所以要给数据中心人员充分的休息时间,按时的上下班,避免长时间工作、疲劳工作,减少出错概率。
与此同时,从设备上增加冗余备份,这样即使人员操作错误,故障设备上的业务可以及时切换到备用设备上。从服务器、存储和网络、电源、空调设备都要有备份功能,虽然成本会增加,但可以大大减少人为误操作的故障发生。
对于技术类的人为故障
数据中心已充斥到我们社会的各个方面,高素质的数据中心管理、维护人员就成了企业迫切寻觅的对象,特别是那些有丰富数据中心工作经验的技术人才。而数据中心是一个复杂的信息系统,由网络、计算机、软件、电源、空调等各系统组成,这就需要数据中心在每个技术领域都要有雄厚技术实力的人才。
一个技术人员从新手成长为资深的、经验丰富的专业人员是需要时间慢慢积累,需要不断的学习和参与培训。对数据中心的技术人员多进行培训,为数据中心人员设定学习目标、提供丰富的培训课程、进行维护技巧指导、让多个老师傅手把手的教导。这样数据中心在各个层面技术人才积累就越来越多了。当数据中心需要对业务进行操作、变更和优化操作时,需要维护团队的人员进行整体讨论,对预知的风险进行分析,确保操作不会对运行业务造成影响。每个变更都是整个技术团队的讨论通过做出的决定,而不是个人的行为,这样能将技术性人为故障降到最低。同时数据中心人员要有优秀的团体协作能力,很多工作都有多个环节,需要多人协作,良好的团队协作能力是确保避免故障的基本素质。
现在的数据中心设备更新换代飞快,一般服务器、网络等设备三五年就得淘汰,所以数据中心人员也需要不断地学习,与产品供应商的技术人员交流、学习。数据中心的人员也需要保持积极的求学上进心,继续学习新知识,否则很快就会被时代所淘汰,被掌握新知识的人淘汰。数据中心人员的语言表达能力也需要提升,因为数据中心人员需要经常和领导、同事、同行、厂商等交流。良好的语言表达能力有助于提高工作效率,数据中心人员迅速掌握自己领域的技能,能对数据中心的发展提供建设性的意见,也能避免在工作中出现低级错误。
如果一个数据中心具有一支技术精湛、责任心强、注重团队合作的团队,那这样的数据中心设备也将会运行在最高水平,数据中心是“成也在人,败也在人”。只有加强对数据中心人员进行全方位的管理,才能确保数据中心长时间高效运行,减少人为故障。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16