京公网安备 11010802034615号
经营许可证编号:京B2-20210330
不平衡数据分类算法介绍与比较
在数据挖掘中,经常会存在不平衡数据的分类问题,比如在异常监控预测中,由于异常就大多数情况下都不会出现,因此想要达到良好的识别效果普通的分类算法还远远不够,这里介绍几种处理不平衡数据的常用方法及对比。
符号表示
记多数类的样本集合为L,少数类的样本集合为S。
用r=|S|/|L|表示少数类与多数类的比例
基准
我们先用一个逻辑斯谛回归作为该实验的基准:
Weighted loss function
一个处理非平衡数据常用的方法就是设置损失函数的权重,使得少数类判别错误的损失大于多数类判别错误的损失。在python的scikit-learn中我们可以使用class_weight参数来设置权重。
欠采样方法(undersampling)
Random undersampling of majority class
一个最简单的方法就是从多数类中随机抽取样本从而减少多数类样本的数量,使数据达到平衡。
Edited Nearest Neighbor (ENN)
我们将那些L类的样本,如果他的大部分k近邻样本都跟他自己本身的类别不一样,我们就将他删除。
Repeated Edited Nearest Neighbor
这个方法就是不断的重复上述的删除过程,直到无法再删除为止。
Tomek Link Removal
如果有两个不同类别的样本,它们的最近邻都是对方,也就是A的最近邻是B,B的最近邻是A,那么A,B就是Tomek link。我们要做的就是讲所有Tomek link都删除掉。那么一个删除Tomek link的方法就是,将组成Tomek link的两个样本,如果有一个属于多数类样本,就将该多数类样本删除掉。
过采样方法(Oversampling)
我们可以通过欠抽样来减少多数类样本的数量从而达到平衡的目的,同样我们也可以通过,过抽样来增加少数类样本的数量,从而达到平衡的目的。
Random oversampling of minority class
一个最简单的方法,就是通过有放回的抽样,不断的从少数类的抽取样本,不过要注意的是这个方法很容易会导致过拟合。我们通过调整抽样的数量可以控制使得r=0.5
Synthetic Minority Oversampling Technique(SMOTE)
这是一个更为复杂的过抽样方法,他的方法步骤如下:
For each point p in S:
1. Compute its k nearest neighbors in S.
2. Randomly choose r ≤ k of the neighbors (with replacement).
3. Choose a random point along the lines joining p and
each of the r selected neighbors.
4. Add these synthetic points to the dataset with class
S.
For each point p in S:
1. 计算点p在S中的k个最近邻
2. 有放回地随机抽取R≤k个邻居
3. 对这R个点,每一个点与点p可以组成一条直线,然后在这条直线上随机取一个点,就产生了一个新的样本,一共可以这样做从而产生R个新的点。
4. 将这些新的点加入S中
Borderline-SMOTE1
这里介绍两种方法来提升SMOTE的方法。
For each point p in S:
1. Compute its m nearest neighbors in T. Call this set Mp and let m'= |Mp ∩ L|.
2. If m'= m, p is a noisy example. Ignore p and continue to the next point.
3. If 0 ≤ m'≤m/2, p is safe. Ignore p and continue to the next point.
4. If m/2 ≤ m'≤ m, add p to the set DANGER.
For each point d in DANGER, apply the SMOTE algorithm to generate synthetic examples.
For each point p in S:
1. 计算点p在训练集T上的m个最近邻。我们称这个集合为Mp然后设 m'= |Mp ∩ L| (表示点p的最近邻中属于L的数量).
2. If m'= m, p 是一个噪声,不做任何操作.
3. If 0 ≤m'≤m/2, 则说明p很安全,不做任何操作.
4. If m/2 ≤ m'≤ m, 那么点p就很危险了,我们需要在这个点附近生成一些新的少数类点,所以我们把它加入到DANGER中.
最后,对于每个在DANGER中的点d,使用SMOTE算法生成新的样本.
我们应用Borderline-SMOTE1的参数设置为k=5,为了使得r=0.5
Borderline-SMOTE2
这个与Borderline-SMOTE1很像,只有最后一步不一样。
在DANGER集中的点不仅从S集中求最近邻并生成新的少数类点,而且在L集中求最近邻,并生成新的少数类点,这会使得少数类的点更加接近其真实值。
FORpinDANGER:1.在S和L中分别得到k个最近邻样本Sk和Lk。2.在Sk中选出α比例的样本点和p作随机的线性插值产生新的少数类样本3.在Lk中选出1−α比例的样本点和p作随机的线性插值产生新的少数类样本。
为了达到r=0.5 实验取k=5
组合方法(Combination)
SMOTE + Tomek Link Removal
SMOTE + ENN
集成方法(Ensemble)
EasyEnsemble
一个最简单的集成方法就是不断从多数类中抽取样本,使得每个模型的多数类样本数量和少数类样本数量都相同,最后将这些模型集成起来。
算法伪代码如下:
1. For i = 1, ..., N:
(a) 随机从 L中抽取样本Li使得|Li| = |S|.
(b) 使用Li和S数据集,训练AdaBoost分类器Fi。

2. 将上述分类器联合起来

BalanceCascad
这个方法跟EasyEnsemble有点像,但不同的是,每次训练adaboost后都会扔掉已被正确分类的样本,经过不断地扔掉样本后,数据就会逐渐平衡。
该图来自:刘胥影, 吴建鑫, 周志华. 一种基于级联模型的类别不平衡数据分类方法[J]. 南京大学学报:自然科学版, 2006, 42(2):148-155
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27