
进行大数据管理的四类公司
在大数据时代,大数据使不同规模公司变得如此迫切的原因在于公司间有效管理数据的程度导致了竞争差距。据经济学人智能单元(Economist Intelligence Unit)调查表明,就大数据管理,公司可以划分为四类,它们是:战略数据管理者,渴望数据管理者;数据收集者和数据闲弃者。经济学人智能单元根据回馈信息总结了各类公司的个性特点。
一、 战略数据管理者
战略数据管理者在各类公司中以其最为成熟的能力位居大数据管理者的最先进的小组。这些公司大都属于制造业企业、金融服务或技术公司。战略数据管理者首先明确了与公司战略目标一致的专项计量和数据项目。其他特点包括:
1. 它们选取最为适当的数据制定决策,它们收集数据的利用率高;
2. 公司高管人士负责数据运作;
3. 它们对数据管理实施全面重点投资,确保数据的准确、全面和可靠;
4. 它们挖掘新兴数据的潜在价值。
二、 渴望数据管理者
这类公司所占数量最大。它们完全认可大数据对公司未来的重要性。它们允许大数据用于战略决策,对其投资甚为积极。但它们依然落后于先行者。这类公司大都分布在通讯和零售业。其他特点包括:
1. 它们的CEO 不大负责数据战略;
2. 它们现在偏重于从数据中学习更多关于内部业务操作的内容,但希望把更多数据面向顾客应用;
3. 不同于战略数据管理者,它们依然纠缠于全面清理和调适数据;
4. 它们中66%的公司仅将有效数据的二分之一进行了恰当应用;
5. 它们很喜欢抱怨太多数据,但资源不足。
三、 数据收集者
这些公司认识到了数据的重要性,但除了储存数据,它们缺乏资源对数据有所作为。它们被数据湮没。这些公司分布于医疗护理和专业服务行业。其他特点包括:
1. 它们极有可能由一名IT 管理者负责数据战略;
2. 它们受损于IT 部门与业务部门之间差强人意的联合。它们中近1/4 认为IT 部门不理解数据的重要性,另外有1/4 认为业务部门不清楚数据的重要性;
3. 它们疲于大多数数据的质量、准确性和一致性;
4. 它们数据管理的努力大多源于满足规定的要求;
5. 除了技能投资,它们对数据管理的几乎所有方面投资都不足;
6. 对于数据的恰当治理它们没有任何正规流程。
四、 数据闲弃者
坦率地讲,30%的数据闲弃者不注重数据收集。另外70%收集数据,依然严重地应用不足。这些公司经营惨淡,遍布各行各业。它们受害于业务部门和IT 部门之间的不良配合,它们大都安排一名中层经理负责数据战略。其他特点包括:
1. 它们更关心改善内部操作,特别关注内部报告;
2. 它们劳神于几乎数据管理的方方面面(除了数据安全);
3. 在数据管理投资上落后于其他公司;
4. 它们至今奋力于维持充足的数据管理技能。
上述分类刻画了围绕数据管理的竞争态势。随着大数据的演进,各组的特点可能会发生变化。但就当前而言,上述分类有助于公司对号入座,更好地理解发展的机遇和面临的挑战。大数据应用的趋势不可逆转。大数据将永久作为公司决策的工具,其作用会变得越来越重要。任何公司若不围绕大数据发展竞争优势就会落伍。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02