京公网安备 11010802034615号
经营许可证编号:京B2-20210330
四个大数据神话必须打破
迄今为止,大数据一直都存在争议。似乎每家软件厂商、每家咨询公司,以及每个思想领袖都在尝试着对“大数据”做出准确的定义。尽管目前还没有出现这样的定义,但是打破关于大数据的神话将有助于我们认识大数据。
神话1:你能够获得所有的数据
在许多方面,我们正生活在一个前所未有的时代当中。我们从来都没有像现在这样能够获得如此多的数据。此前一直被人们所忽视的兆字节、拍字节和艾字节数据如今已经出现了。在如今的工业化社会中,平均每个人一天所消费的信息量超过了生活在十五世纪的人一生所消费的信息量。
目前还没有一个人或一家公司能够存储和检索关于某一特定主题的全部数据,更不要说是所有数据了,包括谷歌在内。谷歌索引的只是表层网中的信息,而不是深层网中的信息。专家估测,后者的规模是前者的25倍。因此,在我们进行搜索时,我们所获得的信息量仅仅是互联网信息量中的4%~6%。
神话2:你需要所有的数据
毫无疑问,数据越多帮助越大,但这并不意味着在做商业决策时你需要所有的数据。正在高效利用大数据的公司已经认识到,他们不需要获得所有的相关信息。
几乎每天都会涌现出大量新的数据源,但是并不是所有的数据都有价值。例如,电子邮件信息常常为我们提供了洞察企业状况的宝贵信息。精明的公司正在挖掘个人信息,以评估员工的情绪,以及谁可能会辞职。但这并不是说所有的电子邮件都具有相同的价值。因为分析垃圾邮件没有任何意义。你并不需要所有的数据。数据当然是越多越好,但是请不要浪费时间尝试做这一不可能实现的事情。
神话3:大数据会给我们明确的答案
我们经常听到这样一句商业格言是“处理你能够处理的数据,并从中获得更多信息。”我们在利用所获信息做商业决策时会遇到许多问题。实际上,我们根本无法利用这些信息完全准确地预测出公司的并购、产品的发布、新的风险投资,以及员工入职等情况。
但这并不是说,存在不确定性,大数据就不能为我们提供帮助了。请不要将减少不确定性和消除不确定性混为一谈。大数据能够帮助我们消除不确定性的这一天还没有到来,可能这一天永远也不会到来。对海量非结构性数据进行分析或许能够帮助公司更好的理解客户的情绪。但是请不要误认为大数据能够为我们排除所有的可能性。生命的无常和业务的起伏将会破坏我们制订出的完美计划。
神话4:大数据只是昙花一现
Nate
Silver可以说是大数据领域中的代表人物,至少在他离开《纽约时报》之前是这样。在2012年的美国总统大选中,尽管许多人预测奥巴马和罗姆尼在得票率方面将旗鼓相当,但是身为统计学家的Silver却预测,奥巴马将以90%的选举人票赢得2012年的美国总统大选。由于Silver的预测模型极为精准,以至于如今许多人在遇到事情后都来向他寻求帮助。
虽然大数据和数据科学的定义在今后几年仍然不会确定下来,但是可以肯定的是,人们在2013年消费的数据量超过了2012年所消费的数据量。许多公司已经认识到了大数据的重要性,拒绝大数据可能将会导致公司在竞争中被淘汰出局。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16