京公网安备 11010802034615号
经营许可证编号:京B2-20210330
供应链八大领域,让商务智能大显神通
集成数据,打包程序,商务智能显威八领域。成本更低,效率更高,让供应链成竞争优势。
如今,供应链管理已经成为一项重要的战略性差异化利器,供应链管理在所有行业都如火如荼地展开,以实现成本效率和更大的敏捷性。然而,为使供应链管理的战略性演变得以延伸,经理人必须有效应对企业需求所导致的诸多挑战,从而能够将供应链数据用于企业的战略性决策之中。
在一条典型的供应链中,数据和信息可以沿多种管道传播,并为企业的众多协作者、合作伙伴和其他参与者所拥有。市场上的软件解决方案都承诺在数据和信息的汪洋大海中为你开辟专门窗口。然而,经验显示,这些产品自身都具有局限性。
那么,建立在数据仓库之上的商务智能应用能够提供解决方案吗?商务智能能够为广大的知识工人创建一个相互联系、没有等级的网络,使他们能够对数据、分析和决策进行共同开发、分享和连接。借助协作型商务智能框架,工人们能够迅速获取他人的智慧结晶,并依此为参考和依据,更快更好地做出更负责任的决定。
商务智能系统使得公司能够更迅速地响应计划外的客户要求,从而对供应链管理大有助益。商务智能使企业变得更加敏捷,从而能够更动态性地适应供应链的容量。商务智能还使得供应链适应最佳的成本结构,消除流程中存在的种种浪费。
八大领域,让商务智能大显神通
产品界定:企业通常将产品界定看作是该工程和营销部门管的事。然而,供应链组织实际上也是一个相当重要的利益相关者。产品复制在简化供应链、协调与库存管理及原材料采购的关系上作用越来越小了,而商务智能则能够主动识别共同的产品类别,从而帮助企业进行有效的物料计划。
某企业一项商务智能分析发现,为了支撑全套和单件产品的销售,所需物料存货过多。该项研究显示,造成仓库空间和劳动力规划不当的罪魁祸首是“成套产品”。于是,该公司决定使用一套单独的商务智能系统,将成套产品转换成各零部件。
库存管理:从成本和存量削减的角度看,库存管理可谓是供应链管理的核心。实物性库存从供应商的仓库起步,通过供应商的交付系统到达公司的仓库,再经过公司的产品线变成成品库存,最后进入分销渠道。此外,虚拟性库存经常隐藏在公司的采购和销售订单之中。这些库存点通常散布在多个物理地点和信息技术系统中。正是由于数据分布如此广泛,从而导致很难对库存情况进行准确追踪。
数据集市(data
mart)有助于将库存数据进行有机整合。存货量是数量关于时间、度量单位和地点的函数。如果把成本这一变量算进去的话,就要从供应商和单位成本的角度进行界定。这两种度量方法基本上都不随时间推移而发生变化。由于能够对其他地点的所有维度———时间、地点、度量单位、供应商以及成本———进行界定,因此分析人员能够将新的存货地点的数字汇总到数据集市之中。
需求和预测:绝大多数企业资源计划(ERP)实施的主要目标都是统一物料的需求和预测。然而,由于企业各运营单位业务流程各异,加之供应链中合作系统各异,使得统一物料需求的努力经常付之东流。此外,当下流行的应用解决方案通常难以将成品需求和原材料需求联系起来。
商务智能(特别是高级统计和数据挖掘工具)再一次发挥了救火队员的作用。它能够将销售订单数据和采购订单数据集合在一起,能够监测这些数据的相互关联性和发展趋势。你还可以进一步将订单数据和更广泛的库存数据集成,以评估物料的实际需求。统一的物料需求意见有助于企业更加准确地进行需求预测———因此能够基于突发需求分配供给。
最后,商务智能还能够缓解因营销和制造环节缺乏关联、特别是竞争者活动影响所导致的割裂情形。
原材料成本和产品价格:原材料和成品分处供应链的两端。通常而言,供应链组织在原材料成本和成品价格的评估方面毫无控制权。但由于它管理着投入和产出,因此供应链组织应当深谙得失攸关以及它对于评估的最终影响。
提供统一物料需求意见的商务智能工具使得企业能够和供应商就价格和交付进行更好的商谈。由于能够进行更智能化的规划,企业可以降低现有库存的成本,转而使用准时制库存(just-in-time
inventory)。此外,组织还更有能力对全球性物料采购进行规划。通过制定出最优的交付时间表以及消除冗余的运输和存储费用,企业能够降低物料处理和交付成本。
成品价格在很大程度上由原材料成本和内部原料加工及搬运成本所决定。商务智能工具帮助企业降低物料采购成本,提高物料搬运效率。企业受益于更高的边际利润:通过为动态性产品定价进行补贴,它能缓解市场压力。
担保和索赔:几乎所有的制造企业都面临对售出产品的担保索赔情形。一般而言,分销商都会和公司签订担保索赔,但与此同时它们却以用于正常销售的现有存货服务客户。因此从公司里流出用于担保索赔的库存很难得到控制。当担保索赔事件一再发生时,这一问题变得更加尖锐。集成了供应链信息的高级商务智能解决方案能够准确追踪担保索赔信息。
供应商管理:为了有效管理供应链,你必须妥善管理供应商。大多数公司都已经开始对自己的供应商同时就硬性和软性资本进行评级。对供应商进行考核的关键绩效指标主要有供应成本、和供应商做买卖的成本、供应品的质量、及时交付性、付款提前时间、周期时间分析以及运输模式绩效。
许多系统一般只记录与这些关键绩效指标有关的数据。然而,要想实施更广泛深入的分析,要想将关键绩效指标度量与公司其他重要数据———供应链业务绩效对现金流量、运营灵活性和整体赢利状况的影响———相联系,商务智能系统则必不可少!
仓库管理:供应链组织必须在仓库中管理原料和成品。如今,市场提供了仓库管理一揽子应用程序。除了这些系统所提供的运营控制,企业还需要管理各种活动的工具:从成本、周转和准确性方面追踪库存;评估仓库结构和空间利用状况;以及从准时收发货、准确放置、拣选和运送、客户需求满足准确率以及劳动力成本控制等角度实施仓库运营水平分析。
光能提供上述数据远远不够,商务智能应用还必须能够对仓库的各种活动实施成本-效益分析,帮助企业决定逆向物流的有效性,确定有助于强化供应链业务流程的模式。
网络架构:履行机构网络———工厂、仓库、分销商、供应商、零售商等等———形成了所有供应链的节点。网络架构是一项战略性的供应链管理决策,它包含决定各节点机构的数目、地点、规模以及供应品。微观和宏观经济要素、物流、技术以及运营要素都对此类决策产生重要的影响。
商务智能工具不仅能够监测上述要素的影响力,从而对各节点机构的最佳物理中心提出建议,而且能够指出现有网络中存在的各种最优机会。
打包程序,将商务智能做到最好
由于每个企业的供应链管理的属性各异,因此不可能存在一个放之四海而皆准的商务智能结构。然由于某些信息需求相似,因此可以给IT设计人员提供构建智能供应链管理架构的基本指导。
为了使商务智能解决方案的收益最大化,企业应当将所有的信息以尽可能完备的形式储存在一把“大伞”之下,如此有利于数据处理和修正。通行之道是界定一个业务单位(UOB),然后将相关的所有数据储存在数据仓库之中。对于制造单位而言,“各个组成部分”就是业务单位。数据仓库保存着各组成部分有关库存、销售和财务的所有信息。
一旦将大多数集成的供应链数据保存在数据仓库中,你就可以将数据进行标准化处理,放入数据集市之中,以便用户群体查询。数据仓库和数据集市的设计应当服从于业务需求。
考虑到供应链管理的重要性,市场已经推出了一系列增添了商务智能能力的打包应用程序,以便和Business Objects、
Cognos、 Information Builders以及其他传统的商务智能市场领导者一争高下。企业应用程序提供商,如J.D.
Edwards、甲骨文公司(Oracle)、仁科公司(PeopleSoft)、SAP等,也正在努力拓展自己的制造解决方案,这些解决方案包括数据仓库、数据集市和商务智能式的数据访问和报告等工具,这些公司有时将这些功能与传统的点解决方案产品捆绑销售。
因此,当能获得更佳的供应链信息集成所应有的效果时,面对各种“嵌入式”应用程序选择,你还会考虑借助于传统的商务智能工具自主开发和部署商务智能应用程序吗?
要解决这一难题,目标的纵向深度的重要性如何是须考虑的关键要素。大多数打包提供商在有限的几个纵向领域中占有特别优势。如SeeCommerce公司在汽车行业实力超群。然而,即使拥有深度优势,在通过发挥信息集成所有潜力的杠杆作用以创建一套企业解决方案方面仍然存有局限。
供应链集成应当超越技术:它对整个组织产生深远的影响。必须对打包应用程序进行细心检测,以便知道它如何避免许多组织曾经历过的“信息孤岛问题”(silo
problem),这一点非常重要。最后,现在大多数企业在供应链管理方面都喜欢采取渐进方式。打包应用程序能做到这一点吗?
商务智能应用程序受欢迎的最后一个原因是,允许使用者对数据报告和数据处理进行试验。这使得用户的分析能够更进一步,从而使供应链管理进入新领域,满足不断发展的业务需求。
无论是自行构建还是购买打包解决方案,优秀的商务智能框架都是创建强大、集成、协作型供应链的关键所在。特别地,在今天的经济环境下,组织不可能创立全新品牌的供应链管理系统。一个阶段性的、模块化的方式能够产生所需的效果。自使用伊始,商务智能应用程序就应当成为模块化努力的核心组成部分,唯有如此,企业才能从供应链持续性的成本效率和效益的监控中获得立竿见影的收益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16