京公网安备 11010802034615号
经营许可证编号:京B2-20210330
区块链分享医疗数据:AI学者提出新型匿名数据收集方式
除比特币之外,区块链匿名与安全的特性还可以帮助医疗领域的研究者们收集用于训练 AI 算法的数据,其方法不会透露数据提供者的隐私信息。Nature 近日报道了来自 UCSF 等大学的新型区块链技术。
研究人员开发 AI 算法,通过 X 光片检测的乳腺癌
Dexter Hadley 认为,如可用数百万张标记好的 X 光片训练筛查算法,人工智能(AI)在乳腺癌检测上或许比医生更具优势。那么研究人员如何获得如此大量的数据?很多国家从法律上保护公民隐私,因此敏感医疗信息依然是研究人员和科技公司的难以接近的地带。
为解决这个问题,加州大学旧金山分校的医学和计算生物学家 Hadley 正为此设计解决方案。他的团队正在构建一个系统,让人们可以轻松、安全地与研究人员分享自己的医疗数据,并保留对数据的控制权。他们的方法基于近来最流行的加密货币——比特币基础上的区块链技术,新方法很快就将投入实际测试中。预计在今年 5 月,Hadley 和他的同事们将开展一项研究,训练一种新的乳腺癌检测 AI 算法,因此他们希望收集 300-500 万美国妇女的乳房 X 光照片。
该团队加入了越来越多使用区块链技术的科学家和初创企业的行列——研究人员正希望以此让共享医疗图像,医疗记录和基因数据更具吸引力、也更加高效。有些项目甚至会对分享数据的用户付款。许多团队的最终目标是使用区块链系统收集所需的数据进行 AI 算法训练。
数据安全
由于基于机器学习的人工智能技术依赖于大量数据进行训练,随着 AI 的兴起,公众正在越来越关注科技巨头是如何从个人医疗信息等数据中挖掘有价值信息的。曾有新闻披露英国国家卫生服务部门(NHS)的一个分支机构在未经充分同意的情况下获得了 160 万份患者病历,包括姓名和敏感信息,例如一个人是否患有性病。在 2016 年,这一事件让谷歌母公司 Alphabet 旗下的人工智能公司 DeepMind 陷入了争议。
麻省麻省理工学院(MIT)计算机科学家 Andrew Lippman 表示:「现在,谷歌和 Facebook 收集到关于你的数据超乎想象。但医药领域没有 Facebook,」他补充道,「使用区块链来保护和分享分散的医疗信息,可能是数据身份控制的典范。」
区块链是一种分布式电子记账系统,可以记录难以改变的「区块链「中的交易。如果黑客要侵入一个区块,他必须独立地篡改所有与之相关的区块——这是一项几乎无法完成的任务。
在 Hadley 的研究中,区块链将起到开关的功能指导参与者,临床医生和研究人员之间的数据流动。参与其中的女性可以使用在线门户网站 breastwecan.org 提供或撤销其数据访问权限,breastwecan.org 依靠区块链来保护存储在云中的数据。
研究人员计划在数百万健康女性和乳腺癌患者的乳房 X 线照片上训练他们的 AI 算法,其目的是最终发展出比人类医生能够更加精确地为肿瘤分类的计算机算法。训练数据越多,算法就越准确,正如放射科医师鉴别肿瘤的能力会随着经验的增长而提高一样。
Hadley 希望女性能够分享他们的乳房 X 光片来提高乳腺癌筛查的普遍性,并借此获得超过医疗机构所掌握的信息量。根据组织密度,年龄和其他已知因素,参与研究的妇女将能够在 breastwecan.org 上查看他们的扫描结果以及对其乳腺癌风险的标准临床解释。
连锁反应
越来越多的机构正在开发区块链市场来代理个人、公司以及学术研究人员之间的数据交换,并提供付款方式。其中一项工作就是 Nebula Genomics 和哈佛大学遗传学家 George Church 共同创立的初创公司。Nebula 旨在联系能够提供基因组测序的人与愿意为该服务付费的公司,以换取访问结果数据。支付自己测序费用的人将能够使用 Nebula 出售他们的遗传信息,支付将以数字代币的形式出现并可以兑换成美元。
Nebula 会确保其合作伙伴公司所作的任何承诺,例如公司保存个人数据的时间。相比之下,当加利福尼亚州山景城的 23andMe 等基因组测序公司的客户同意分享他们的数据进行研究时,用户们很大程度上放弃了对数据使用方式的控制。许多测序公司甚至会向生物技术和制药公司出售散装匿名遗传数据。
「更好地利用医疗记录可以让我们获得更快速、更完善的治疗,」Lippman 表示。他和他的学生正在开发一种被称为 MedRec 的区块链健康记录共享系统,它将于今年在波士顿的 Beth Israel Deaconess 医疗中心进行测试。该系统允许用户将信息加入到自己的医疗记录中,其中可以包含可穿戴电子设备(如 Fitbits)上收集到的信息。临床医生和研究者可以在得到允许之后使用这些额外的数据,为人们量身定制医疗解决方案。
只有在被充分分享和研究之后,人们收集到的大量医疗数据才能让医疗领域获得进步。「我们需要吸引用户,让他们分享自己的数据,」Hadley 表示,「所以我们需要寻找能够完美掌控数据的新技术,而区块链正好是其中之一。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08