京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言-找出向量或矩阵中的最大10个数
一、向量
最大10的数的索引(位置),可先按降序排序,得到索引号,然后将前10个取出即可。
建议方法:
order(x,decreasing=TRUE)[1:10]
过程详解:
1、测试数据x
> x
[1] 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.09 0.20 0.09 0.08 0.14 0.14 0.23
[15] 0.08 0.06 0.12 0.20 0.14 0.11 0.20 0.14 0.17 0.15 0.18 0.15 0.20 0.12
[29] 0.23 0.08 0.12 0.08 0.23 0.12 0.08 0.17 0.18 0.17 0.12 0.17 0.14 0.18
[43] 0.11 0.27 0.06
2、按降序排序
> order(x,decreasing=TRUE)
[1] 44 14 29 33 9 18 21 27 25 37 42 23 36 38 40 24 26 12 13 19 22 41 17 28
[25] 31 34 39 20 43 8 10 11 15 30 32 35 7 16 45 1 2 3 4 5 6
>
3、这里就能取出最大10个数的索引了
> order(x,decreasing=TRUE)[1:10]
[1] 44 14 29 33 9 18 21 27 25 37
4、可以看一下,这取出的10个数的索引是不是指向最大的十个数。
> x[order(x,decreasing=TRUE)[1:10]]
[1] 0.27 0.23 0.23 0.23 0.20 0.20 0.20 0.20 0.18 0.18
二、矩阵
首先设定有矩阵y,9行5列,求最大的10个数的索引。
> y
[,1] [,2] [,3] [,4] [,5]
[1,] 0.00 0.09 0.14 0.12 0.18
[2,] 0.00 0.08 0.11 0.23 0.17
[3,] 0.00 0.14 0.20 0.08 0.12
[4,] 0.00 0.14 0.14 0.12 0.17
[5,] 0.00 0.23 0.17 0.08 0.14
[6,] 0.00 0.08 0.15 0.23 0.18
[7,] 0.06 0.06 0.18 0.12 0.11
[8,] 0.09 0.12 0.15 0.08 0.27
[9,] 0.20 0.20 0.20 0.17 0.06
解答方法:
1、使用sore.list()进行排序
> arrayInd(sort.list(y,decreasing=T)[1:10],dim(y))
[,1] [,2]
[1,] 8 5
[2,] 5 2
[3,] 2 4
[4,] 6 4
[5,] 9 1
[6,] 9 2
[7,] 3 3
[8,] 9 3
[9,] 7 3
[10,] 1 5
2、使用order()函数进行排序
错误的方法:
> arrayInd(which(order(y, decreasing = TRUE) <= 10), dim(y))
[,1] [,2]
[1,] 5 1
[2,] 3 4
[3,] 4 4
[4,] 1 5
[5,] 4 5
[6,] 5 5
[7,] 6 5
[8,] 7 5
[9,] 8 5
[10,] 9 5
which(order(y, decreasing = TRUE) <= 10)含义是先将数据进行排序,然后取索引小于等于10的,最大的10个数在排完序后,索引不应是<=10,而是排在前10位的就是最大的10个数的索引。
正确的方法:
> arrayInd(order(y,decreasing=TRUE)[1:10],dim(y))
[,1] [,2]
[1,] 8 5
[2,] 5 2
[3,] 2 4
[4,] 6 4
[5,] 9 1
[6,] 9 2
[7,] 3 3
[8,] 9 3
[9,] 7 3
[10,] 1 5
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27