
R语言-找出向量或矩阵中的最大10个数
一、向量
最大10的数的索引(位置),可先按降序排序,得到索引号,然后将前10个取出即可。
建议方法:
order(x,decreasing=TRUE)[1:10]
过程详解:
1、测试数据x
> x
[1] 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.09 0.20 0.09 0.08 0.14 0.14 0.23
[15] 0.08 0.06 0.12 0.20 0.14 0.11 0.20 0.14 0.17 0.15 0.18 0.15 0.20 0.12
[29] 0.23 0.08 0.12 0.08 0.23 0.12 0.08 0.17 0.18 0.17 0.12 0.17 0.14 0.18
[43] 0.11 0.27 0.06
2、按降序排序
> order(x,decreasing=TRUE)
[1] 44 14 29 33 9 18 21 27 25 37 42 23 36 38 40 24 26 12 13 19 22 41 17 28
[25] 31 34 39 20 43 8 10 11 15 30 32 35 7 16 45 1 2 3 4 5 6
>
3、这里就能取出最大10个数的索引了
> order(x,decreasing=TRUE)[1:10]
[1] 44 14 29 33 9 18 21 27 25 37
4、可以看一下,这取出的10个数的索引是不是指向最大的十个数。
> x[order(x,decreasing=TRUE)[1:10]]
[1] 0.27 0.23 0.23 0.23 0.20 0.20 0.20 0.20 0.18 0.18
二、矩阵
首先设定有矩阵y,9行5列,求最大的10个数的索引。
> y
[,1] [,2] [,3] [,4] [,5]
[1,] 0.00 0.09 0.14 0.12 0.18
[2,] 0.00 0.08 0.11 0.23 0.17
[3,] 0.00 0.14 0.20 0.08 0.12
[4,] 0.00 0.14 0.14 0.12 0.17
[5,] 0.00 0.23 0.17 0.08 0.14
[6,] 0.00 0.08 0.15 0.23 0.18
[7,] 0.06 0.06 0.18 0.12 0.11
[8,] 0.09 0.12 0.15 0.08 0.27
[9,] 0.20 0.20 0.20 0.17 0.06
解答方法:
1、使用sore.list()进行排序
> arrayInd(sort.list(y,decreasing=T)[1:10],dim(y))
[,1] [,2]
[1,] 8 5
[2,] 5 2
[3,] 2 4
[4,] 6 4
[5,] 9 1
[6,] 9 2
[7,] 3 3
[8,] 9 3
[9,] 7 3
[10,] 1 5
2、使用order()函数进行排序
错误的方法:
> arrayInd(which(order(y, decreasing = TRUE) <= 10), dim(y))
[,1] [,2]
[1,] 5 1
[2,] 3 4
[3,] 4 4
[4,] 1 5
[5,] 4 5
[6,] 5 5
[7,] 6 5
[8,] 7 5
[9,] 8 5
[10,] 9 5
which(order(y, decreasing = TRUE) <= 10)含义是先将数据进行排序,然后取索引小于等于10的,最大的10个数在排完序后,索引不应是<=10,而是排在前10位的就是最大的10个数的索引。
正确的方法:
> arrayInd(order(y,decreasing=TRUE)[1:10],dim(y))
[,1] [,2]
[1,] 8 5
[2,] 5 2
[3,] 2 4
[4,] 6 4
[5,] 9 1
[6,] 9 2
[7,] 3 3
[8,] 9 3
[9,] 7 3
[10,] 1 5
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15