
R语言中矩阵、向量在内存上的区别
向量
在初始创建时,系统就给分配了足够的空间,没有赋值的下标对应的值都用NA代替了,所以向量不存在下标超出的限制比如:
> x
[1] 1 2
> length(x)
[1] 2
> x[100]
[1] NA
> length(x)
[1] 2
> x[100]=3
> length(x)
[1] 100
创建x时给了两个数字,所以长度为2。但是取值x[100]时显示的是NA并非下标越界,当赋值x[100]=3时,x的长度变为了100。
这种性质的好处就是可以取代向量的重新赋值语句比如:
>x<- c(x,2)
可以使用以下语句代替:
>x[length(x)+1]=2
这样的好处就是由于不用重新赋值,不需要重新分配内存,因此可以大大提升程序的效率,比如:
> create_vector2<-function(k)
+ {
+ gh=c()
+ for(i in 1:k){
+ gh=c(gh,i)
+ }
+ return(gh)
+ }
> create_vector1<-function(k)
+ {
+ gh=c()
+ gh[1:k]=1:k
+ return(gh)
+ }
以上为两个创建向量的函数,运行时间测量如下:
> system.time(create_vector1(10000)) #创建10000长度的向量,函数1运行时间
用户 系统 流逝
0 0 0
> system.time(create_vector2(10000)) #创建10000长度的向量,函数2运行时间
用户 系统 流逝
0.11 0.00 0.11
> system.time(create_vector1(100000)) #创建100000长度的向量,函数1运行时间
用户 系统 流逝
0 0 0
> system.time(create_vector2(100000)) #创建100000长度的向量,函数1运行时间
用户 系统 流逝
11.48 0.01 11.71
可以看到函数1明显比函数2快很多。函数1的运行时间基本为0。
矩阵
矩阵并没有这种性质,矩阵的内存空间是初始创建空间的大小。一但确定,只有通过重新赋值来改变。所以会出现下标越界等错误。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10