
影响算法效率的因素
1、从大的方面来讲,所选择的语言对算法的效率影响很大。一般来说,使用越高级的语言所需要的时间和空间就越大。另外,不同编译器产生的代码质量不同,这对算法的效率也会有影响。
2、存储结构
数据的存储结构,分为顺序存储结构和链式存储结构。顺序存储结构的特点是借助元素在存储器中的相对位置来表示数据元素之间的逻辑关系;链式存储结构则是借助指示元素存储地址的指针表示数据元素之间的逻辑关系。不同的问题求解选用不同的存储结构。
例:稀疏矩阵的存储和转置算法
(1)存储
如果采用数组的方式进行存储,对稀疏矩阵来说有很多零元素,因而浪费空间严重,因此我们对稀疏矩阵进行压缩存储。只存储稀疏矩阵的非零元素。在数据结构教材中用三元组表示方法,建立三元组顺序表。
//..................................................................................................................
#define MAXSIZE 12500
typedef struct{
int i,j;
ElemType e;
}Triple;
Typedef struct{
Triple data[MAXSIZE + 1];
int mu,nu,tu;
}TSMatrix;
//....................................................................................
(2)转置
直接进行转置时,对要转置的A表从第一行起扫描一遍,按照原矩阵的列序进行转置,得到的新矩阵是以行序为主序的。但是这样做只适合于非零元素的个数非常少的情况,否则和矩阵的直接转置算法时间复杂度相差无几。
改进:矩阵的快速转置算法
附设两个变量,num[col]表示矩阵中第col 列中非零元的个数,cpot[col]表示第col 列第一个非零元在b.data中的位置。
我们可以再矩阵转置之前将我们附设的两个变量都求出来,然后进行转置,即为快速转置算法。
3、指针操作
在使用指针时,指针的有秩序扫描非常重要。例如在模式匹配中,如果直接进行匹配,当有不完全匹配时,主串的指针需要回溯。在KMP算法中,我们先可以求出每个元素的next函数值,从而在发生不完全匹配时,主串的指针不必要回溯,只需要模式串的元素回到当前元素的next函数值所指的元素再进行匹配即可。当主串和模式串有很多不完全匹配时,KMP算法可以大大提高效率。
4、查找的效率
有很多快速查找的算法都可以提高查找的效率,如建立索引,折半查找等,都是在记录和关键字之间进行比较,从而寻求关系。这一类查找建立在比较的基础之上。查找的效率依赖于查找过程中所进行的比较次数。
哈希表
在哈希表中,使得记录的存储位置和关键字之间建立一个确定的存储关系,因而在查找时,只需要根据这个对应的关系f 找到给定值K 的像f(k)。用这个思想建立哈希表。如在基因组匹配时,用哈希表非常方便。
5.数据类型的选择
数据类型的选择也会影响算法效率,在对时间和空间要求非常严格时,尽可能的使用占用空间较小的数据类型。使用动态开辟空间会使得效率降低,所有在能确定或估计出需要的空间大小的情况下尽量使用静态数字。个人觉得用vector虽然方便,但是效率并不高。
6、存储方式
用堆操作还是用栈操作,对于不同的问题需要仔细选择。在串和队列的有关操作中用堆操作合适,在树的操作中用栈操作合适,如建立二叉树中序遍历的递归算法或非递归算法,用栈操作好。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03