京公网安备 11010802034615号
经营许可证编号:京B2-20210330
影响算法效率的因素
1、从大的方面来讲,所选择的语言对算法的效率影响很大。一般来说,使用越高级的语言所需要的时间和空间就越大。另外,不同编译器产生的代码质量不同,这对算法的效率也会有影响。
2、存储结构
数据的存储结构,分为顺序存储结构和链式存储结构。顺序存储结构的特点是借助元素在存储器中的相对位置来表示数据元素之间的逻辑关系;链式存储结构则是借助指示元素存储地址的指针表示数据元素之间的逻辑关系。不同的问题求解选用不同的存储结构。
例:稀疏矩阵的存储和转置算法
(1)存储
如果采用数组的方式进行存储,对稀疏矩阵来说有很多零元素,因而浪费空间严重,因此我们对稀疏矩阵进行压缩存储。只存储稀疏矩阵的非零元素。在数据结构教材中用三元组表示方法,建立三元组顺序表。
//..................................................................................................................
#define MAXSIZE 12500
typedef struct{
int i,j;
ElemType e;
}Triple;
Typedef struct{
Triple data[MAXSIZE + 1];
int mu,nu,tu;
}TSMatrix;
//....................................................................................
(2)转置
直接进行转置时,对要转置的A表从第一行起扫描一遍,按照原矩阵的列序进行转置,得到的新矩阵是以行序为主序的。但是这样做只适合于非零元素的个数非常少的情况,否则和矩阵的直接转置算法时间复杂度相差无几。
改进:矩阵的快速转置算法
附设两个变量,num[col]表示矩阵中第col 列中非零元的个数,cpot[col]表示第col 列第一个非零元在b.data中的位置。
我们可以再矩阵转置之前将我们附设的两个变量都求出来,然后进行转置,即为快速转置算法。
3、指针操作
在使用指针时,指针的有秩序扫描非常重要。例如在模式匹配中,如果直接进行匹配,当有不完全匹配时,主串的指针需要回溯。在KMP算法中,我们先可以求出每个元素的next函数值,从而在发生不完全匹配时,主串的指针不必要回溯,只需要模式串的元素回到当前元素的next函数值所指的元素再进行匹配即可。当主串和模式串有很多不完全匹配时,KMP算法可以大大提高效率。
4、查找的效率
有很多快速查找的算法都可以提高查找的效率,如建立索引,折半查找等,都是在记录和关键字之间进行比较,从而寻求关系。这一类查找建立在比较的基础之上。查找的效率依赖于查找过程中所进行的比较次数。
哈希表
在哈希表中,使得记录的存储位置和关键字之间建立一个确定的存储关系,因而在查找时,只需要根据这个对应的关系f 找到给定值K 的像f(k)。用这个思想建立哈希表。如在基因组匹配时,用哈希表非常方便。
5.数据类型的选择
数据类型的选择也会影响算法效率,在对时间和空间要求非常严格时,尽可能的使用占用空间较小的数据类型。使用动态开辟空间会使得效率降低,所有在能确定或估计出需要的空间大小的情况下尽量使用静态数字。个人觉得用vector虽然方便,但是效率并不高。
6、存储方式
用堆操作还是用栈操作,对于不同的问题需要仔细选择。在串和队列的有关操作中用堆操作合适,在树的操作中用栈操作合适,如建立二叉树中序遍历的递归算法或非递归算法,用栈操作好。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26