
SPSS独立样本t检验结果分析
SPSS独立样本t检验结果分析
上图为独立样本T检验。
由下图的基本参数设置生成
结果解读:三步法
第一步:拿到两组核心基本统计量,对于数值变量,核心基本统计量就三个,样本量N,均值,标准差。然后产生主观意识,发现男生肺活量是3887.16,女生肺活量是2522.57,给人男生肺活量可能比女生高的主观感受
第二步:“大同小异”,即sig大于0.05则看“假设方差相等”这一行,反之则看“假设方差不相等”这一行(Sig=significance,意为“显著性”、显著性指标,后面的值就是统计出的P值,一般大于0.05拒绝原假设,否则接受原假设,一般都是期望拒绝原假设,少数情况希望接受原假设,所以sig就是判断的依据。)
上图的sig=.000<0.05说明两组方差不齐,有差异
第三步:由第二步推出应看“假设方差不相等”这一行。
应该报告的内容为:采用了两独立样本T检验,得到t=28.843,p=0.000<0.05
得出的结论为:因为C图中的Sig值小于0.05,故两组之间的肺活量差异有统计学意义
变量分三种:数值变量、等级变量、分类变量。
数值变量优先考虑t检验
等级变量优先考虑非参数检验
SPSS中有8种非参数检验方法: • Chi-square卡方检验 • Binomial二项分布检验 • Runs游程检验 • 1-Sample K-S 单个样本柯尔莫哥洛夫-斯米诺夫检验 • 2 Independent sample 两个独立 样本检验 • K Independentsample K个独立样本检验 • 2 Related Independent sample两 个相关样本检验 • K RelatedIndependent sample K 个相关样本检验
分类变量优先考虑卡方检验
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01