京公网安备 11010802034615号
经营许可证编号:京B2-20210330
牛津、剑桥等专家联合发布报告:警惕AI在未来的恶意使用
当谈到人工智能所带来的危险,我们通常强调的是意想不到的副作用。我们担心可能在无意间创造了超级智能AI,但在编程中没有加入道德约束; 或者我们部署了刑事判决算法,这些算法包括了训练数据的偏见。
但这只是一方面。
但是那些想把AI用于不道德行为、犯罪或恶意目的的人呢?这些人群是否更有可能利用AI进行恶意攻击?
来自牛津大学的人类未来研究所、剑桥大学的潜在风险研究中心和Elon Musk支持的非营利性OpenAI等十四家组织机构的二十六名专家认为,以上两个问题的答案是肯定的。
在上周发布的《人工智能的恶意使用:预测、预防和缓解》(The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation)的报告中,这些学者和研究人员列举了在未来5年内AI可能给我们生活带来危害的方式,以及能够阻止这些危害的方法。虽然AI给人们带来新型的攻击,该报告的合著者,来自人类未来研究所的Miles Brundage认为,我们并不该感到恐慌或放弃希望。
“我倾向于保持乐观,我们可以采取许多措施,”Brundage认为。“这篇报告的目的并不是描述未来惨淡的前景,而意味着我们可以采取大量防御措施,并且还有很多需要学习的东西。我并不认为这是没有希望的,这篇报告更像是倡导书。”
近100页的报告内容广泛,当中重点介绍了AI将加剧数字、物理安全系统的威胁,以及创造新型危险的方式。还阐述了解决这些问题的五条建议:包括让AI工程师了解他们研究中可能存在的恶意使用; 启动政策制定者和学者之间的交流对话,避免政府和执法机构对此一无所知。
AI将减少威胁成本
其中最主要的威胁在于:AI能够让需要人工完成的任务自动化,从而大大减少攻击成本。
比如,钓鱼攻击,即某人发送其中特别设计的信息,诱使他人放弃安全凭证(比如冒充银行的电子邮件)。当中的大部分工作可以由AI自动完成,映射出个人的社交和专业网络,然后生成消息。比如通过创建聊天机器人冒充好友,向你索要邮箱密码等。
这种攻击听起来很复杂,但一旦你创建了这些软件,那么就可以反复使用,而不需要额外成本。钓鱼邮件已经带来了足够的危害,比如2014年好莱坞名人iCloud照片泄露事件,以及希拉里克林顿的竞选主席John Podesta私人邮件的泄露事件。
AI将增加威胁的新维度
第二大要点是,AI会为现有威胁增加新的维度。
比如在钓鱼攻击中,AI不仅可用于生邮件和短信,还可以用来伪造音频和视频。AI可以通过几分钟的语音来模拟目标人物的声音,甚至生成虚假的视频。这种新型的威胁形式将在未来五年成为不可忽视的问题。
AI将带来的全新威胁
最后,报告介绍了AI带来的全新威胁。当中列出了一些可能出现的场景,比如恐怖分子将植入炸弹的清洁机器人带入政府部门。机器人利用内置的视觉感应系统追踪特定的目标,当靠近目标时炸弹引爆。这利用了AI的新产品(清洁机器人)和其自主功能(机器视觉追踪)。
这些情景听起来似乎有些不切实际,但我们已经目睹了利用AI进行的新型攻击。比如用deepfakes用深度学习技术,在未经同意的情况下所合成将名人的脸合成到色情视频中。虽然目前还未出现引人注目的案例,但不法分子可以利用这种方式进行骚扰和勒索。
我们能做什么
报告中的这些例子让你不禁思考:我们能做什么?
报告中提出了五个主要建议:
· AI人员应该告知研究中可能被恶意使用的情况;
· 决策者需要向技术专家了解这些潜在威胁;
· AI领域需要向网络安全专家学习如何更好地进行系统保护;
· 需要制定AI的道德伦理框架,并严格遵循;
· 需要有更多的人的参与。不仅仅是AI科学家和决策者,还包括伦理学家,企业和普通大众。
换句话说:我们需要更多的交流以及更多的行动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27