京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言CSV文件
在R语言中,我们可以从存储在R环境外部的文件读取数据。还可以将数据写入由操作系统存储和访问的文件。 R可以读取和写入各种文件格式,如:csv,excel,xml等。
在本章中,我们将学习如何从csv文件中读取数据,然后将数据写入csv文件。 该文件应该存在于当前工作目录中,以方便R可以读取它。 当然,也可以设置自己的目录,并从那里读取文件。
获取和设置工作目录
可以使用getwd()函数来检查R工作区指向哪个目录,使用setwd()函数设置新的工作目录。
# Get and print current working directory.
print(getwd())
# Set current working directory.
# setwd("/web/com")
setwd("F:/worksp/R")
# Get and print current working directory.
print(getwd())
R
当我们执行上述代码时,会产生以下结果 -
[1] "C:/Users/Administrator/Documents"
[1] "F:/worksp/R"
Shell
注意: 此结果取决于您的操作系统和您当前正在工作的目录。
作为CSV文件输入
csv文件是一个文本文件,其中列中的值用逗号分隔。假设下面的数据存在于名为input.csv 的文件中。
您可以使用Windows记事本通过复制和粘贴此数据来创建此文件。使用记事本中的另存为所有文件(*.*)选项将文件另存为:input.csv(在目录:F:/worksp/R 下载)。
id,name,salary,start_date,dept
1,Rick,623.3,2012-01-01,IT
2,Dan,515.2,2013-09-23,Operations
3,Michelle,611,2014-11-15,IT
4,Ryan,729,2014-05-11,HR
,Gary,843.25,2015-03-27,Finance
6,Nina,578,2013-05-21,IT
7,Simon,632.8,2013-07-30,Operations
8,Guru,722.5,2014-06-17,Finance
Csv
读取CSV文件
以下是read.csv()函数的一个简单示例,用于读取当前工作目录中可用的CSV文件 -
setwd("F:/worksp/R")
data <- read.csv("input.csv")
print(data)
R
当我们执行上述代码时,会产生以下结果 -
> data <- read.csv("input.csv")
> print(data)
id name salary start_date dept
1 1 Rick 623.30 2012-01-01 IT
2 2 Dan 515.20 2013-09-23 Operations
3 3 Michelle 611.00 2014-11-15 IT
4 4 Ryan 729.00 2014-05-11 HR
5 NA Gary 843.25 2015-03-27 Finance
6 6 Nina 578.00 2013-05-21 IT
7 7 Simon 632.80 2013-07-30 Operations
8 8 Guru 722.50 2014-06-17 Finance
Shell
分析CSV文件
默认情况下,read.csv()函数将输出作为数据帧。这可以很容易地查看到,此外,我们可以检查列和行的数量。
setwd("F:/worksp/R")
data <- read.csv("input.csv")
print(is.data.frame(data))
print(ncol(data))
print(nrow(data))
R
当我们执行上述代码时,会产生以下结果 -
[1] TRUE
[1] 5
[1] 8
Shell
当我们在数据帧中读取数据,可以应用所有适用于数据帧的函数,如下一节所述。
获得最高工资
# Create a data frame.
data <- read.csv("input.csv")
# Get the max salary from data frame.
sal <- max(data$salary)
print(sal)
R
当我们执行上述代码时,会产生以下结果 -
[1] 843.25
Shell
获得最高工资的人员的详细信息
可以使用过滤条件获取符合特定的行,类似于SQL的where子句。
setwd("F:/worksp/R")
# Create a data frame.
data <- read.csv("input.csv")
# Get the max salary from data frame.
sal <- max(data$salary)
# Get the person detail having max salary.
retval <- subset(data, salary == max(salary))
print(retval)
R
当我们执行上述代码时,会产生以下结果 -
id name salary start_date dept
5 NA Gary 843.25 2015-03-27 Finance
Shell
获取IT部门的所有人员
# Create a data frame.
data <- read.csv("input.csv")
retval <- subset( data, dept == "IT")
print(retval)
R
当我们执行上述代码时,会产生以下结果 -
id name salary start_date dept
1 1 Rick 623.3 2012-01-01 IT
3 3 Michelle 611.0 2014-11-15 IT
6 6 Nina 578.0 2013-05-21 IT
Shell
获取IT部门薪水在600以上的人员
setwd("F:/worksp/R")
# Create a data frame.
data <- read.csv("input.csv")
info <- subset(data, salary > 600 & dept == "IT")
print(info)
R
当我们执行上述代码时,会产生以下结果 -
id name salary start_date dept
1 1 Rick 623.3 2012-01-01 IT
3 3 Michelle 611.0 2014-11-15 IT
Shell
获得在2014年或以后入职的人员
setwd("F:/worksp/R")
# Create a data frame.
data <- read.csv("input.csv")
retval <- subset(data, as.Date(start_date) > as.Date("2014-01-01"))
print(retval)
R
当我们执行上述代码时,会产生以下结果 -
id name salary start_date dept
3 3 Michelle 611.00 2014-11-15 IT
4 4 Ryan 729.00 2014-05-11 HR
5 NA Gary 843.25 2015-03-27 Finance
8 8 Guru 722.50 2014-06-17 Finance
Shell
写入CSV文件
R可以从现有数据帧中来创建csv文件。write.csv()函数用于创建csv文件。 该文件在工作目录中创建。参考以下示例代码 -
setwd("F:/worksp/R")
# Create a data frame.
data <- read.csv("input.csv")
retval <- subset(data, as.Date(start_date) > as.Date("2014-01-01"))
# print(retval)
# Write filtered data into a new file.
write.csv(retval,"output.csv")
newdata <- read.csv("output.csv")
print(newdata)
R
当我们执行上述代码时,会产生以下结果 -
X id name salary start_date dept
1 3 3 Michelle 611.00 2014-11-15 IT
2 4 4 Ryan 729.00 2014-05-11 HR
3 5 NA Gary 843.25 2015-03-27 Finance
4 8 8 Guru 722.50 2014-06-17 Finance
Shell
这里列X来自数据集更新器。在编写文件时可以使用其他参数来删除它。
setwd("F:/worksp/R")
# Create a data frame.
data <- read.csv("input.csv")
retval <- subset(data, as.Date(start_date) > as.Date("2014-01-01"))
# Write filtered data into a new file.
write.csv(retval,"output.csv", row.names = FALSE)
newdata <- read.csv("output.csv")
print(newdata)
R
当我们执行上述代码时,会产生以下结果 -
id name salary start_date dept
1 3 Michelle 611.00 2014-11-15 IT
2 4 Ryan 729.00 2014-05-11 HR
3 NA Gary 843.25 2015-03-27 Finance
4 8 Guru 722.50 2014-06-17 Finance
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20