
云计算与大数据数据相互依存度越来越强
从某种意义上说,大规模数据中心是实现云计算的基础。在今天令人难以置信的大型模块化数据中心出现之前,向其他人销售计算资源简直是一个噩梦。对于大多数客户而言,不仅提供高可用性的成本让他们望而却步,而且可能无法完成。
云计算和数据中心并驾齐驱
随着部署率的增长,云计算将继续推动数据中心的演变,从架构到软件和控制流程。更广泛的部署不仅将迫使数据中心运营商重新思考其内部运作,还需要他们能够适应新的新兴需求。随着使用量的增加,还有能源消耗的增加,并且,由于供应商提供的计算资源变得更加多样化,这个环境将变得更加多种多样,管理也将更加复杂。简单的措施(例如使用外部空气来取代空调设备)将帮助企业节省数百万美元。
如果云计算带来计算资源的商品化,数据中心将需要进行优化,以便允许企业通过销售这些资源来生存。由于云计算在可预见的未来中将依赖于数据中心,这两种技术的演变无疑是联系在一起的,任何关注其中一种技术的人都应该同时密切关注另一种技术。
云计算始于数据中心。我们都在梦想着这样一个世界,即任何人都可以将他们多余的计算能力作为虚拟化资源卖给其他人,这是一种完全分布式的云计算模式。然而,现在的现实是,云计算遵循一种集中化工厂模式:资源由中央“工厂”(即亚马逊、Rackspace、微软、谷歌等的庞大数据中心)提供,并通过互联网分发给消费者。
可扩展性、可用性、弹性和安全性是必须以这样或者那样的方式纳入数据中心设计中的因素,从数据中心所在建筑物的结构一直到每台服务器上使用的软件,都必须考虑这些因素。否则,云计算供应商给出的任何承诺都将无法实现。
云计算供应商的承诺
对于云计算供应商给出的主要承诺,特别是在基础设施即服务领域,我们可以看到,大多数这些承诺都取决于数据中心建立之前出现的问题。对于客户而言,正常运行的承诺似乎很简单:当服务正常运行时,我可以访问和使用资源,而如果出于某种不能正常运行时,我将无法访问资源。而对于服务供应商而言,问题棘手的多:服务无法正常运行可能是因为服务器或磁盘故障,或者是重大停电事故。很多较低级的问题(例如电源或网络连接)都与较大的问题相关联,例如数据中心建立的位置。
在很多国家,你不可能同时接入到两个独立的外部电力能源供应商。这个事实可能会迫使企业投入更多资金来购买发电机或者其他后备能源,这无疑增加了运营成本。在网络方面,也面临同样的问题:无法接入到多个供应商,企业可能被迫部署自己的基础设施,甚至“自暴自弃”地接受这样的事实,即自己可能无法达到一定的可用性水平。
可扩展性是另一个有趣的问题。云计算服务供应商提供的(几乎)无限的可扩展性意味着他们必须不断增加可用容量,为了能够应对任何增加的需求。基础设施供应商每一天需要向他们的数据中心增加数百台甚至数千台服务器,不仅是用于替换故障设备,同时也为了应对未来的需求。将可扩展的资源交到基础设施最终用户手中将导致这样的情况:你根本不知道单个用户最多可能需要多少资源(这也是为什么大多数云服务供应商对单个账户可利用的服务器数量进行了虚拟的限制的原因)。
即使是像亚马逊的可用区(多个数据中心位置靠近,互相之间保持低延迟性的连接)这样简单的东西,也会带来设计和管理方面的复杂性。在亚马逊的情况下,正常运行时间是对多个可用区的衡量,而不是单个可用区,这些可用区必须足够分散,这样影响某个可用区的外部问题就不会影响到其他可用区,同时,距离也不能太远,以保证低延迟性连接。与此同时,它们代表了一种新的数据中心概念:多个数据中心可作为单个数据中心运行。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08