京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS详细教程:配对样本的非参数检验『Wilcoxon符号秩检验』
一、问题与数据
某研究者研发出一种新型的运动饮料,该饮料在传统运动饮料的基础上增加了蛋白质混合物。研究者拟分析该新型运动饮料是否可以提升受试者的长跑能力。
他招募了20位受试者,分别进行两次试验。第一次让受试者在饮用传统运动饮料后,尽全力地跑2小时,随后测量每位受试者的长跑距离,记录为carb变量。第二次让受试者在饮用新型运动饮料后,尽全力地跑2小时,随后也测量每位受试者的长跑距离,记录为carb_protein变量。
两项试验的间隔时间适中,可认为受试者在服用运动饮料之前的身体能力基本一致,收集的部分数据如下。
二、对问题的分析
对于配对设计的连续性变量在两组间的差异,可以选用配对t检验或Wilcoxon signed-rank检验(Wilcoxon符号秩检验)。配对t检验适用于两组差值近似服从正态分布的数据,当不满足该前提时,可选择的一种方案是使用Wilcoxon signed-rank检验。
研究者拟判断同一组受试者在饮用传统运动饮料与新型运动饮料后长跑距离的差别,本研究的数据非正态(即差值不服从正态分布,注意这里仅为模拟数据,实际使用时需要专业判断或结合正态性检验结果)。针对这种情况,我们可以使用Wilcoxon signed-rank检验。
使用Wilcoxon signed-rank检验时,需要满足3项假设:
假设1:观测变量是连续变量或有序分类变量,如本研究的观测变量长跑距离是一项连续变量。
假设2:研究数据可以被分为两组,如本研究数据可以分为服用新型运动饮料和服用传统运动饮料两组。
假设3:数据结构为配对形式,如本研究数据属于受试者自身配对的形式。
经分析,本研究数据符合假设1-3,那么如何进行Wilcoxon signed-rank检验呢?
三、SPSS操作
1. 生成差值变量
Wilcoxon signed-rank检验是针对配对变量差值进行假设检验的,所以生成差值变量十分重要。
在主界面点击Transform→Compute Variable,弹出Compute Variable对话框。在 Target Variable栏输入“difference”,生成新变量的变量名。接着在Numeric Expression栏输入“carb_protein - carb”,计算新变量值,如下图:
点击OK,数据视图生成一列新变量“difference”。
2. 生成中位数
在主界面点击Analyze→Compare Means→Means
弹出Means对话框后,将carb、carb_protein和difference变量放入Dependent List栏。
点击Options选项,将Median放入Cell Statistics栏,去掉Cell Statistics栏对Mean、Number of Cases和Standard Deviation的选择,点击Continue→OK。
3. Wilcoxon signed-rank检验的SPSS操作
在主界面点击Analyze→Nonparametric Tests→Legacy Dialogs→2 Related Samples。
弹出下图Two-Related-Samples Tests对话框后,将carb和carb_protein变量放入 Test Pairs栏后,点击OK。
四、结果解释
1. 统计描述
在进行Wilcoxon signed-rank检验结果解释之前,我们需要对研究数据有一个基本的了解。经上述“生成中位数”的操作,SPSS输出各组中位数结果如下图。
由上图可知,服用传统运动饮料后受试者的长跑距离中位数为11.1600 km,服用新型运动饮料后受试者的长跑距离中位数为11.3675 km,差值的中位数为0.1350 km。
2. Wilcoxon signed-rank检验结果
SPSS输出Wilcoxon signed-rank检验结果如下图。
本研究Wilcoxon signed-rank检验的Z=-3.672,P<0.001, 说明两组数据中位数差值与0的差异具有统计学意义,即服用传统运动饮料与服用新型运动饮料受试者的长跑距离不同。结合中位数的结果可知,新型的运动饮料有助于提升受试者的长跑能力(P<0.001)。
五、撰写结论
采用Wilcoxon signed-rank检验,分析相较于传统运动饮料,服用新型运动饮料是否可以提升受试者的长跑能力。结果提示,服用传统运动饮料后受试者的长跑距离中位数为11.1600 km,服用新型运动饮料后受试者的长跑距离中位数为11.3675 km,差值的中位数为0.1350 km。
Wilcoxon signed-rank检验显示,Z=-3.672,P<0.001, 说明新型的运动饮料有助于提升受试者的长跑能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15