
SPSS详细教程:配对样本的非参数检验『Wilcoxon符号秩检验』
一、问题与数据
某研究者研发出一种新型的运动饮料,该饮料在传统运动饮料的基础上增加了蛋白质混合物。研究者拟分析该新型运动饮料是否可以提升受试者的长跑能力。
他招募了20位受试者,分别进行两次试验。第一次让受试者在饮用传统运动饮料后,尽全力地跑2小时,随后测量每位受试者的长跑距离,记录为carb变量。第二次让受试者在饮用新型运动饮料后,尽全力地跑2小时,随后也测量每位受试者的长跑距离,记录为carb_protein变量。
两项试验的间隔时间适中,可认为受试者在服用运动饮料之前的身体能力基本一致,收集的部分数据如下。
二、对问题的分析
对于配对设计的连续性变量在两组间的差异,可以选用配对t检验或Wilcoxon signed-rank检验(Wilcoxon符号秩检验)。配对t检验适用于两组差值近似服从正态分布的数据,当不满足该前提时,可选择的一种方案是使用Wilcoxon signed-rank检验。
研究者拟判断同一组受试者在饮用传统运动饮料与新型运动饮料后长跑距离的差别,本研究的数据非正态(即差值不服从正态分布,注意这里仅为模拟数据,实际使用时需要专业判断或结合正态性检验结果)。针对这种情况,我们可以使用Wilcoxon signed-rank检验。
使用Wilcoxon signed-rank检验时,需要满足3项假设:
假设1:观测变量是连续变量或有序分类变量,如本研究的观测变量长跑距离是一项连续变量。
假设2:研究数据可以被分为两组,如本研究数据可以分为服用新型运动饮料和服用传统运动饮料两组。
假设3:数据结构为配对形式,如本研究数据属于受试者自身配对的形式。
经分析,本研究数据符合假设1-3,那么如何进行Wilcoxon signed-rank检验呢?
三、SPSS操作
1. 生成差值变量
Wilcoxon signed-rank检验是针对配对变量差值进行假设检验的,所以生成差值变量十分重要。
在主界面点击Transform→Compute Variable,弹出Compute Variable对话框。在 Target Variable栏输入“difference”,生成新变量的变量名。接着在Numeric Expression栏输入“carb_protein - carb”,计算新变量值,如下图:
点击OK,数据视图生成一列新变量“difference”。
2. 生成中位数
在主界面点击Analyze→Compare Means→Means
弹出Means对话框后,将carb、carb_protein和difference变量放入Dependent List栏。
点击Options选项,将Median放入Cell Statistics栏,去掉Cell Statistics栏对Mean、Number of Cases和Standard Deviation的选择,点击Continue→OK。
3. Wilcoxon signed-rank检验的SPSS操作
在主界面点击Analyze→Nonparametric Tests→Legacy Dialogs→2 Related Samples。
弹出下图Two-Related-Samples Tests对话框后,将carb和carb_protein变量放入 Test Pairs栏后,点击OK。
四、结果解释
1. 统计描述
在进行Wilcoxon signed-rank检验结果解释之前,我们需要对研究数据有一个基本的了解。经上述“生成中位数”的操作,SPSS输出各组中位数结果如下图。
由上图可知,服用传统运动饮料后受试者的长跑距离中位数为11.1600 km,服用新型运动饮料后受试者的长跑距离中位数为11.3675 km,差值的中位数为0.1350 km。
2. Wilcoxon signed-rank检验结果
SPSS输出Wilcoxon signed-rank检验结果如下图。
本研究Wilcoxon signed-rank检验的Z=-3.672,P<0.001, 说明两组数据中位数差值与0的差异具有统计学意义,即服用传统运动饮料与服用新型运动饮料受试者的长跑距离不同。结合中位数的结果可知,新型的运动饮料有助于提升受试者的长跑能力(P<0.001)。
五、撰写结论
采用Wilcoxon signed-rank检验,分析相较于传统运动饮料,服用新型运动饮料是否可以提升受试者的长跑能力。结果提示,服用传统运动饮料后受试者的长跑距离中位数为11.1600 km,服用新型运动饮料后受试者的长跑距离中位数为11.3675 km,差值的中位数为0.1350 km。
Wilcoxon signed-rank检验显示,Z=-3.672,P<0.001, 说明新型的运动饮料有助于提升受试者的长跑能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16数据分析师:数字时代的商业解码者 在数字经济蓬勃发展的今天,数据已成为企业乃至整个社会最宝贵的资产之一。无论是 ...
2025-06-16解锁数据分析师证书:开启数字化职业新篇 在数字化浪潮汹涌的当下,数据已成为驱动企业前行的关键要素。从市场趋势研判、用 ...
2025-06-16CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13