京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python多线程实现同步的四种方式
本篇文章主要介绍了Python多线程实现同步的四种方式,小编觉得挺不错的,现在分享给大家,也给大家做个参考。
临界资源即那些一次只能被一个线程访问的资源,典型例子就是打印机,它一次只能被一个程序用来执行打印功能,因为不能多个线程同时操作,而访问这部分资源的代码通常称之为临界区。
锁机制
threading的Lock类,用该类的acquire函数进行加锁,用realease函数进行解锁
import threading
import time
class Num:
def __init__(self):
self.num = 0
self.lock = threading.Lock()
def add(self):
self.lock.acquire()#加锁,锁住相应的资源
self.num += 1
num = self.num
self.lock.release()#解锁,离开该资源
return num
n = Num()
class jdThread(threading.Thread):
def __init__(self,item):
threading.Thread.__init__(self)
self.item = item
def run(self):
time.sleep(2)
value = n.add()#将num加1,并输出原来的数据和+1之后的数据
print(self.item,value)
for item in range(5):
t = jdThread(item)
t.start()
t.join()#使线程一个一个执行
当一个线程调用锁的acquire()方法获得锁时,锁就进入“locked”状态。每次只有一个线程可以获得锁。如果此时另一个线程试图获得这个锁,该线程就会变为“blocked”状态,称为“同步阻塞”(参见多线程的基本概念)。
直到拥有锁的线程调用锁的release()方法释放锁之后,锁进入“unlocked”状态。线程调度程序从处于同步阻塞状态的线程中选择一个来获得锁,并使得该线程进入运行(running)状态。
信号量
信号量也提供acquire方法和release方法,每当调用acquire方法的时候,如果内部计数器大于0,则将其减1,如果内部计数器等于0,则会阻塞该线程,知道有线程调用了release方法将内部计数器更新到大于1位置。
import threading
import time
class Num:
def __init__(self):
self.num = 0
self.sem = threading.Semaphore(value = 3)
#允许最多三个线程同时访问资源
def add(self):
self.sem.acquire()#内部计数器减1
self.num += 1
num = self.num
self.sem.release()#内部计数器加1
return num
n = Num()
class jdThread(threading.Thread):
def __init__(self,item):
threading.Thread.__init__(self)
self.item = item
def run(self):
time.sleep(2)
value = n.add()
print(self.item,value)
for item in range(100):
t = jdThread(item)
t.start()
t.join()
条件判断
所谓条件变量,即这种机制是在满足了特定的条件后,线程才可以访问相关的数据。
它使用Condition类来完成,由于它也可以像锁机制那样用,所以它也有acquire方法和release方法,而且它还有wait,notify,notifyAll方法。
"""
一个简单的生产消费者模型,通过条件变量的控制产品数量的增减,调用一次生产者产品就是+1,调用一次消费者产品就会-1.
"""
"""
使用 Condition 类来完成,由于它也可以像锁机制那样用,所以它也有 acquire 方法和 release 方法,而且它还有
wait, notify, notifyAll 方法。
"""
import threading
import queue,time,random
class Goods:#产品类
def __init__(self):
self.count = 0
def add(self,num = 1):
self.count += num
def sub(self):
if self.count>=0:
self.count -= 1
def empty(self):
return self.count <= 0
class Producer(threading.Thread):#生产者类
def __init__(self,condition,goods,sleeptime = 1):#sleeptime=1
threading.Thread.__init__(self)
self.cond = condition
self.goods = goods
self.sleeptime = sleeptime
def run(self):
cond = self.cond
goods = self.goods
while True:
cond.acquire()#锁住资源
goods.add()
print("产品数量:",goods.count,"生产者线程")
cond.notifyAll()#唤醒所有等待的线程--》其实就是唤醒消费者进程
cond.release()#解锁资源
time.sleep(self.sleeptime)
class Consumer(threading.Thread):#消费者类
def __init__(self,condition,goods,sleeptime = 2):#sleeptime=2
threading.Thread.__init__(self)
self.cond = condition
self.goods = goods
self.sleeptime = sleeptime
def run(self):
cond = self.cond
goods = self.goods
while True:
time.sleep(self.sleeptime)
cond.acquire()#锁住资源
while goods.empty():#如无产品则让线程等待
cond.wait()
goods.sub()
print("产品数量:",goods.count,"消费者线程")
cond.release()#解锁资源
g = Goods()
c = threading.Condition()
pro = Producer(c,g)
pro.start()
con = Consumer(c,g)
con.start()
同步队列
put方法和task_done方法,queue有一个未完成任务数量num,put依次num+1,task依次num-1.任务都完成时任务结束。
import threading
import queue
import time
import random
'''
1.创建一个 Queue.Queue() 的实例,然后使用数据对它进行填充。
2.将经过填充数据的实例传递给线程类,后者是通过继承 threading.Thread 的方式创建的。
3.每次从队列中取出一个项目,并使用该线程中的数据和 run 方法以执行相应的工作。
4.在完成这项工作之后,使用 queue.task_done() 函数向任务已经完成的队列发送一个信号。
5.对队列执行 join 操作,实际上意味着等到队列为空,再退出主程序。
'''
class jdThread(threading.Thread):
def __init__(self,index,queue):
threading.Thread.__init__(self)
self.index = index
self.queue = queue
def run(self):
while True:
time.sleep(1)
item = self.queue.get()
if item is None:
break
print("序号:",self.index,"任务",item,"完成")
self.queue.task_done()#task_done方法使得未完成的任务数量-1
q = queue.Queue(0)
'''
初始化函数接受一个数字来作为该队列的容量,如果传递的是
一个小于等于0的数,那么默认会认为该队列的容量是无限的.
'''
for i in range(2):
jdThread(i,q).start()#两个线程同时完成任务
for i in range(10):
q.put(i)#put方法使得未完成的任务数量+1
以上就是本文的全部内容,希望对大家的学习有所帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01