
Python中内置数据类型list,tuple,dict,set的区别和用法
Python语言简洁明了,可以用较少的代码实现同样的功能。这其中Python的四个内置数据类型功不可没,他们即是list, tuple, dict, set。这里对他们进行一个简明的总结。
List
字面意思就是一个集合,在Python中List中的元素用中括号[]来表示,可以这样定义一个List:
L = [12, 'China', 19.998]
可以看到并不要求元素的类型都是一样的。当然也可以定义一个空的List:
L = []
Python中的List是有序的,所以要访问List的话显然要通过序号来访问,就像是数组的下标一样,一样是下标从0开始:
>>> print L[0]
12
千万不要越界,否则会报错
>>> print L[3]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
IndexError: list index out of range
List也可以倒序访问,通过“倒数第x个”这样的下标来表示序号,比如-1这个下标就表示倒数第一个元素:
>>> L = [12, 'China', 19.998]
>>> print L[-1]
19.998
-4的话显然就越界了
>>> print L[-4]
Traceback (most recent call last):
File "<pyshell#2>", line 1, in <module>
print L[-4]
IndexError: list index out of range
>>>
List通过内置的append()方法来添加到尾部,通过insert()方法添加到指定位置(下标从0开始):
>>> L = [12, 'China', 19.998]
>>> L.append('Jack')
>>> print L
[12, 'China', 19.998, 'Jack']
>>> L.insert(1, 3.14)
>>> print L
[12, 3.14, 'China', 19.998, 'Jack']
>>>
通过pop()删除最后尾部元素,也可以指定一参数删除指定位置:
>>> L.pop()
'Jack'
>>> print L
[12, 3.14, 'China', 19.998]
>>> L.pop(0)
12
>>> print L
[3.14, 'China', 19.998]
也可以通过下标进行复制替换
>>> L[1] = 'America'
>>> print L
[3.14, 'America', 19.998]
Tuple
Tuple可以看做是一种“不变”的List,访问也是通过下标,用小括号()表示:
>>> t = (3.14, 'China', 'Jason')
>>> print t
(3.14, 'China', 'Jason')
但是不能重新赋值替换:
>>> t[1] = 'America'
Traceback (most recent call last):
File "<pyshell#21>", line 1, in <module>
t[1] = 'America'
TypeError: 'tuple' object does not support item assignment
也没有pop和insert、append方法。
可以创建空元素的tuple:
t = ()
或者单元素tuple (比如加一个逗号防止和声明一个整形歧义):
t = (3.14,)
那么tuple这个类型到底有什么用处呢?要知道如果你希望一个函数返回多个返回值,其实只要返回一个tuple就可以了,因为tuple里面的含有多个值,而且是不可变的(就像是java里面的final)。当然,tuple也是可变的,比如:
>>> t = (3.14, 'China', 'Jason', ['A', 'B'])
>>> print t
(3.14, 'China', 'Jason', ['A', 'B'])
>>> L = t[3]
>>> L[0] = 122
>>> L[1] = 233
>>> print t
(3.14, 'China', 'Jason', [122, 233])
这是因为Tuple所谓的不可变指的是指向的位置不可变,因为本例子中第四个元素并不是基本类型,而是一个List类型,所以t指向的该List的位置是不变的,但是List本身的内容是可以变化的,因为List本身在内存中的分配并不是连续的。
Dict
Dict是Python中非常重要的数据类型,就像它的字面意思一样,它是个活字典,其实就是Key-Value键值对,类似于HashMap,可以用花括号{}通过类似于定义一个C语言的结构体那样去定义它:
>>> d = {
'Adam': 95,
'Lisa': 85,
'Bart': 59,
'Paul': 75
}
>>> print d
{'Lisa': 85, 'Paul': 75, 'Adam': 95, 'Bart': 59}
可以看到打印出来的结果都是Key:Value的格式,可以通过len函数计算它的长度(List,tuple也可以):
>>> len(d)
4
可以直接通过键值对方式添加dict中的元素:
>>> print d
{'Lisa': 85, 'Paul': 75, 'Adam': 95, 'Bart': 59}
>>> d['Jone'] = 99
>>> print d
{'Lisa': 85, 'Paul': 75, 'Adam': 95, 'Jone': 99, 'Bart': 59}
List和Tuple用下标来访问内容,而Dict用Key来访问: (字符串、整型、浮点型和元组tuple都可以作为dict的key)
>>> print d['Adam']
95
如果Key不存在,会报错:
>>> print d['Jack']
Traceback (most recent call last):
File "<pyshell#40>", line 1, in <module>
print d['Jack']
KeyError: 'Jack'
所以访问之前最好先查询下key是否存在:
>>> if 'Adam' in d : print 'exist key'
exist key
或者直接用保险的get方法:
>>> print d.get('Adam')
95
>>> print d.get('Jason')
None
至于遍历一个dict,实际上是在遍历它的所有的Key的集合,然后用这个Key来获得对应的Value:
>>> for key in d : print key, ':', d.get(key)
Lisa : 85
Paul : 75
Adam : 95
Bart : 59
Dict具有一些特点:
查找速度快。无论是10个还是10万个,速度都是一样的,但是代价是耗费的内存大。List相反,占用内存小,但是查找速度慢。这就好比是数组和链表的区别,数组并不知道要开辟多少空间,所以往往开始就会开辟一个大空间,但是直接通过下标查找速度快;而链表占用的空间小,但是查找的时候必须顺序的遍历导致速度很慢
没有顺序。Dict是无顺序的,而List是有序的集合,所以不能用Dict来存储有序集合
Key不可变,Value可变。一旦一个键值对加入dict后,它对应的key就不能再变了,但是Value是可以变化的。所以List不可以当做Dict的Key,但是可以作为Value:
>>> print d
{'Lisa': 85, 'Paul': 75, 'Adam': 95, 'Jone': 99, 'Bart': 59}
>>> d['NewList'] = [12, 23, 'Jack']
>>> print d
{'Bart': 59, 'NewList': [12, 23, 'Jack'], 'Adam': 95, 'Jone': 99, 'Lisa': 85, 'Paul': 75}
Key不可重复。(下面例子中添加了一个'Jone':0,但是实际上原来已经有'Jone'这个Key了,所以仅仅是改了原来的value)
>>> print d
{'Bart': 59, 'NewList': [12, 23, 'Jack'], 'Adam': 95, 'Jone': 99, 'Lisa': 85, 'Paul': 75}
>>> d['Jone'] = 0
>>> print d
{'Bart': 59, 'NewList': [12, 23, 'Jack'], 'Adam': 95, 'Jone': 0, 'Lisa': 85, 'Paul': 75}
Dict的合并,如何将两个Dict合并为一个,可以用dict函数:
>>> d1 = {'mike':12, 'jack':19}
>>> d2 = {'jone':22, 'ivy':17}
>>> dMerge = dict(d1.items() + d2.items())
>>> print dMerge
{'mike': 12, 'jack': 19, 'jone': 22, 'ivy': 17}
或者
>>> dMerge2 = dict(d1, **d2)
>>> print dMerge2
{'mike': 12, 'jack': 19, 'jone': 22, 'ivy': 17}
方法2比方法1速度快很多,方法2等同于:
>>> dMerge3 = dict(d1)
>>> dMerge3.update(d2)
>>> print dMerge
{'mike': 12, 'jack': 19, 'jone': 22, 'ivy': 17}
set
set就像是把Dict中的key抽出来了一样,类似于一个List,但是内容又不能重复,通过调用set()方法创建:
>>> s = set(['A', 'B', 'C'])
就像dict是无序的一样,set也是无序的,也不能包含重复的元素。
对于访问一个set的意义就仅仅在于查看某个元素是否在这个集合里面:
>>> print 'A' in s
True
>>> print 'D' in s
False
大小写是敏感的。
也通过for来遍历:
s = set([('Adam', 95), ('Lisa', 85), ('Bart', 59)])
#tuple
for x in s:
print x[0],':',x[1]
>>>
Lisa : 85
Adam : 95
Bart : 59
通过add和remove来添加、删除元素(保持不重复),添加元素时,用set的add()方法:
>>> s = set([1, 2, 3])
>>> s.add(4)
>>> print s
set([1, 2, 3, 4])
如果添加的元素已经存在于set中,add()不会报错,但是不会加进去了:
>>> s = set([1, 2, 3])
>>> s.add(3)
>>> print s
set([1, 2, 3])
删除set中的元素时,用set的remove()方法:
>>> s = set([1, 2, 3, 4])
>>> s.remove(4)
>>> print s
set([1, 2, 3])
如果删除的元素不存在set中,remove()会报错:
>>> s = set([1, 2, 3])
>>> s.remove(4)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
KeyError: 4
所以如果我们要判断一个元素是否在一些不同的条件内符合,用set是最好的选择,下面例子:
months = set(['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec',])
x1 = 'Feb'
x2 = 'Sun'
if x1 in months:
print 'x1: ok'
else:
print 'x1: error'
if x2 in months:
print 'x2: ok'
else:
print 'x2: error'
>>>
x1: ok
x2: error
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16数据分析师:数字时代的商业解码者 在数字经济蓬勃发展的今天,数据已成为企业乃至整个社会最宝贵的资产之一。无论是 ...
2025-06-16解锁数据分析师证书:开启数字化职业新篇 在数字化浪潮汹涌的当下,数据已成为驱动企业前行的关键要素。从市场趋势研判、用 ...
2025-06-16CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13CDA 数据分析师:数字化时代的关键人才 在当今数字化浪潮席卷全球的时代,数据已然成为驱动企业发展、推动行业变革的核心要素。 ...
2025-06-13CDA 数据分析师报考条件全解析 在大数据和人工智能时代,数据分析师成为了众多行业追捧的热门职业。CDA(Certified Data Analyst ...
2025-06-13“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-09