
python类的方法属性与方法属性的动态绑定代码详解
动态语言与静态语言有很多不同,最大的特性之一就是可以实现动态的对类和实例进行修改,在Python中,我们创建了一个类后可以对实例和类绑定心的方法或者属性,实现动态绑定。
最近在学习python,纯粹是自己的兴趣爱好,然而并没有系统地看python编程书籍,觉得上面描述过于繁琐,在网站找了一些学习的网站,发现廖老师的网站上面的学习资源很不错,而且言简意赅,提取了一些python中的重要的语法和案例。重要的是可以在线测试python的运行代码,缺点就是没有系统的看python的书籍,不能及时的将知识的碎片化联系在一起,这也是看书与不看书的区别。尤其是在python类与实例的方法的调用中觉得云里雾里,思考之后将自己的想法记录下,一来加深自己理解,巩固自己记忆,而来帮助一些想要学习python的朋友理解这门抽象的语言,理解不当之处,希望大家给予指正,谢谢。
1、python中的类与实例
先定义一个类
class Student(object):
初始化,将一些必要属性绑定到Student类中
def __init__(self, name, score):
self.name = name
self.score = score
在内部定义一个函数,实现对传入实例的属性操作,将数据进行封装在内部,这些封装的数据本身适合类进行关联的,称之为类的方法。
def print_score(self):
print('%s: %s' % (self.name, self.score))
2、对实例拥有的属性与方法的调用
传入一个实例
bart = Student('Bart Simpson', 59)
对属性的调用
>>> bart.name
'Bart Simpson'
对方法的调用
>>> bart.print_score()
Bart Simpson: 59
都没有问题,以下来理解python中实例中属性与方法的绑定
3、python中实例属性与方法绑定
先定义一个类
class Student(object):
pass
传入一个实例
s = Student()
动态给实例绑定一个属性
s.name = 'Michael'
接下来给实例绑定方法
先定义一个函数
def set_age(self, age): # 定义一个函数作为实例方法
self.age = age
对实例的方法绑定
from types import MethodType
s.set_age = MethodType(set_age, s) # 给实例绑定一个方法
s.set_age(25) # 调用实例方法
>>> s.age # 测试结果
25
对类的方法绑定
def set_score(self, score):#定义一个函数作为类的方法
self.score = score
Student.set_score = set_score#绑定方法
廖老师在后面补充了一句:set_score方法可以直接定义在class中,但动态绑定允许我们在程序运行的过程中动态给class加上功能,这在静态语言中很难实现。
我理解的意思是,一般的对于定义一个类,会在类进行初始化的时候进行属性的绑定,传入实例的时候直接传入带参数的实例,通过内部定义的一些方法,就直接可以对实例的属性和实例继承于类的方法进行数据操作,引用,例如xxx.namexxx.print_name的形式。但是如果定义的类没有初始化,基于python语言良好的动态绑定的属性,我们可以对传入的实例进行实例和方法的绑定,对属性的绑定比较简单,对方法的绑定需要通过fromtypesimportMethodType的形式,(其他的形式暂时还不知道),告诉解释器s.set_age的方法操作是将set_age函数绑定s即s.set_age=MethodType(set_age,s),这样python就知道怎样执行s的set_age方法。但是这样绑定方法只能对类中的绑定的方法实例起效,要想对类中所有实例生效需要动态的对类进行方法的绑定。就像我们上面看到的一样。绑定之后,接下来就直接可以类似于xxx.namexxx.print_name的形式进行调用了。
对于方法是否能够直接调用,在于定义的函数是否在类中的定义还是基于函数的定义,对于不在类中定义的函数,实现对实例的方法操作就需要进行动态的绑定,或者对实例所属的类进行方法绑定;而在类中定义的函数即方法,在实例中可以直接进行调用。
总结
以上就是本文关于python类的方法属性与方法属性的动态绑定代码详解的全部内容,希望对大家有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18