
浅谈python类属性的访问、设置和删除方法
下面小编就为大家带来一篇浅谈python类属性的访问、设置和删除方法。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。
类属性和对象属性
我们把定义在类中的属性称为类属性,该类的所有对象共享类属性,类属性具有继承性,可以为类动态地添加类属性。
对象在创建完成后还可以为它添加额外的属性,我们把这部分属性称为对象属性,对象属性仅属于该对象,不具有继承性。
类属性和对象属性都会被包含在dir()中,而vars()是仅包含对象属性。vars()跟__dict__是等同的。
类属性和对象属性可类比于Java中的static成员和非static成员,只不python中的类属性和对象属性都是可以动态添加(和删除)的。
class A(object):
name='orisun'
def __init__(self):
self.age=10
class B(A):
city='bei jing'
def __init__(self):
self.tempurature=20
if __name__ == '__main__':
a=A()
print dir(A)
print dir(a)
print a.__dict__
print vars(a)
print
b=B()
print dir(B)
print dir(b)
print b.__dict__
print vars(b)
输出
['__class__', '__delattr__', '__dict__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'name']
['__class__', '__delattr__', '__dict__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'age', 'name']
{'age': 10}
{'age': 10}
['__class__', '__delattr__', '__dict__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'city', 'name']
['__class__', '__delattr__', '__dict__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'city', 'name', 'tempurature']
{'tempurature': 20}
{'tempurature': 20}
动态地为类添加类属性后,该类的所有对象也都添加了该属性(即使是动态添加类属性之前创建的对象)。通过实例修改属性,并不会影响其他实例的同名属性和类上的同名属性。
class A(object):
name='orisun'
def __init__(self):
self.age=10
if __name__ == '__main__':
a=A()
print dir(a)
A.city='BeiJing' #动态添加类属性,会反应到所有对象上
b=A()
A.name='zcy' #动态修改类属性,会反应到所有对象上
print dir(b)
print dir(a)
print a.name
b.name='tom' #通过实例修改属性,并不会影响其他实例的同名属性和类上的同名属性
print a.name
print A.name
print b.name
输出
['__class__', '__delattr__', '__dict__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'age', 'name']
['__class__', '__delattr__', '__dict__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'age', 'city', 'name']
['__class__', '__delattr__', '__dict__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'age', 'city', 'name']
zcy
zcy
zcy
tom
下文中讨论的全部是类属性,不涉及对象属性。
对属性的访问、设置和删除又分为2种情况:
1.通过对象(实例)访问、设置和删除属性,即obj.attr、obj.attr=val、del obj.attr
2.通过类访问、设置和删除属性,即Cls.attr、Cls.attr=val、del Cls.attr
本文将针对这2种情况分别讨论。
Descriptor
一个Descriptor是指实现了__get__的类,实现__set__和__delete__是可选的。同时实现了__get__和__set__则称为Data Descriptor,如果只实现了__get__则称为Non-data Descriptor。
class Descriptor(object):
def __get__(self,instance,owner):
return 'Descriptor in '+owner.__name__
def __set__(self,obj,val):
pass
def __delete__(self,obj):
pass
先给一个Descriptor的示例,__get__、__set__、__delete__的作用后文再细讲。
通过实例访问属性
__getattribute__、__getattr__、__get__和__dict__[attr]都是跟属性访问相关的方法,它们的优先级:
1.当类中定义了__getattribute__方法时,则调用__getattribute__。
2.如果访问的属性存在,且
2.1 属性是个Descriptor,是调用这个属性的__get__
2.2 属性不是Descriptor,则调用__dict__[attr]
3.如果类中没有定义该属性,则调用__getattr__
4.否则,抛出异常AttributeError
验证4
class A(object):
pass
if __name__ == '__main__':
a=A()
print a.d
输出:
AttributeError: 'A' object has no attribute 'd'
验证3
class A(object):
def __getattr__(self,name):
return name+" not found in "+self.__class__.__name__+" object"
if __name__ == '__main__':
a=A()
print a.d
输出:
d not found in A object
验证2.1
class Descriptor(object):
def __get__(self,instance,owner):
return 'Descriptor in '+owner.__name__
class A(object):
d=Descriptor()
def __getattr__(self,name):
return name+" not found in "+self.__class__.__name__+" object"
if __name__ == '__main__':
a=A()
print a.d
输出:
Descriptor in A
__getattr__并没有被调用。
验证2.2
class A(object):
d=10
def __getattr__(self,name):
return name+" not found in "+self.__class__.__name__+" object"
if __name__ == '__main__':
a=A()
print a.d
输出:
__getattr__并没有被调用。
验证1
class Descriptor(object):
def __get__(self,instance,owner):
return 'Descriptor in '+owner.__name__
class A(object):
d=Descriptor()
def __getattribute__(self,name):
return '__getattribute__ '
def __getattr__(self,name):
return name+" not found in "+self.__class__.__name__+" object"
if __name__ == '__main__':
a=A()
输出:
__getattribute__
__get__和__getattr__并没有被调用。
通过实例设置属性
跟属性设置相关的方法有3个:__setattr__、__set__和__dict__[attr]=val。它们的优先级跟get正好反过来:
1.如果类中定义了__setattr__方法,则直接调用__setattr__
2.如果赋值的属性是个Descriptor,且
2.1 该Descriptor中定义了__set__,则直接调用__set__
2.2 该Descriptor中没有定义__set__,则调用__dict__[attr]=val
3.如果赋值的属性不是Descriptor,则直接调用__dict__[attr]=val
4.如果该属性不存在,则动态地添加该属性,然后调用__dict__[attr]=val进行赋值
验证4
class A(object):
pass
if __name__ == '__main__':
a=A()
a.d='hello'
print a.d
输出:
hello
验证3
class A(object):
d=10
if __name__ == '__main__':
a=A()
a.d=30
print a.d
输出:
验证2.2
class Descriptor(object):
def __get__(self,instance,owner):
return 'Descriptor in '+owner.__name__
class A(object):
d=Descriptor()
if __name__ == '__main__':
a=A()
a.d=30
print a.d
输出:
验证2.1
class Descriptor(object):
def __get__(self,instance,owner):
return 'Descriptor in '+owner.__name__
def __set__(self,instance,value):
pass
class A(object):
d=Descriptor()
if __name__ == '__main__':
a=A()
a.d=30
print a.d
输出
Descriptor in A
因为代码“a.d=30”调用了__set__,而__set__又什么都没做,所以属性d还是Descriptor对象(而非30),那么在执行"print a.d"时自然就调到了__get__
验证1
class Descriptor(object):
def __get__(self,instance,owner):
return 'Descriptor in '+owner.__name__
def __set__(self,instance,value):
print '__set__'
class A(object):
d=Descriptor()
def __setattr__(self,name,value):
print '__setattr__'
if __name__ == '__main__':
a=A()
a.d=30
print a.d
输出
__setattr__
Descriptor in A
调用了__setattr__,而__set__并没有被调到。
通过实例删除属性
调用del instance.attr进行属性删除时可能会调到__delattr__或__delete__,它们的优先级跟set雷同。
1.如果类中定义了__delattr__方法,则直接调用__delattr__
2.如果赋值的属性是个Descriptor,且该Descriptor中定义了__delete__,则直接调用__delete__
3.如果赋值的属性是个Descriptor,且该Descriptor中没有定义__delete__,则会报异常AttributeError:属性是只读的
4.如果赋值的属性不是Descriptor,也会报异常AttributeError:属性是只读的
5.如果该属性不存在,则报异常AttributeError
验证5
class A(object):
pass
if __name__ == '__main__':
a=A()
del a.d
输出
AttributeError: 'A' object has no attribute 'd'
验证4
class A(object):
d=10
if __name__ == '__main__':
a=A()
del a.d
输出
?
1
AttributeError: 'A' object attribute 'd' is read-only
验证3
class Descriptor(object):
def __get__(self,instance,owner):
return 'Descriptor in '+owner.__name__
class A(object):
d=Descriptor()
if __name__ == '__main__':
a=A()
del a.d
输出
AttributeError: 'A' object attribute 'd' is read-only
验证2
class Descriptor(object):
def __get__(self,instance,owner):
return 'Descriptor in '+owner.__name__
def __delete__(self,instance):
print '__delete__'
class A(object):
d=Descriptor()
if __name__ == '__main__':
a=A()
del a.d
输出
__delete__
验证1
class Descriptor(object):
def __get__(self,instance,owner):
return 'Descriptor in '+owner.__name__
def __delete__(self,instance):
print '__delete__'
class A(object):
d=Descriptor()
def __delattr__(self,name):
print '__delattr__'
if __name__ == '__main__':
a=A()
del a.d
输出
__delattr__
__delete__并没有被调用。
__get__ __set__ __delete__参数说明
class Descriptor(object):
def __get__(self,obj,owner):
return '__get__',self,obj,owner
def __set__(self,obj,val):
print '__set__',self,obj,val
def __delete__(self,obj):
print '__delete__',self,obj
class A(object):
d=Descriptor()
if __name__ == '__main__':
a=A()
print a.d
a.d=3
del a.d
输出
('__get__', <__main__.Descriptor object at 0x100481c10>, <__main__.A object at 0x1004a0fd0>, <class '__main__.A'>)
__set__ <__main__.Descriptor object at 0x100481c10> <__main__.A object at 0x1004a0fd0> 3
__delete__ <__main__.Descriptor object at 0x100481c10> <__main__.A object at 0x1004a0fd0>
可见,3个方法参数中的obj是Descriptor属性所在的对象,而owner参数(__get__中的owner参数)是该对象所属的类。
在上面的讨论中我们是通过实例操作属性,如果你作一下对应转换:"实例转换到类,类转换到MetaClass",那就是通过类操作属性的规则。这种对应转换也是容易理解的,应该类是用于创建对象的,而MetaClass是用于创建类的。
class MetaClass(object):
pass
class A(object):
__metaclass__=MetaClass
通过类访问属性
通过A.attr访问属性的规则为:
1.如果MetaClass中有__getattribute__,则直接返回该__getattribute__的结果。
2.如果attr是个Descriptor,则直接返回Descriptor的__get__的结果。
3.如果attr是通过属性,则直接返回attr的值
4.如果类中没有attr,且MetaClass中定义了__getattr__,则调用MetaClass中的__getattr__
5.如果类中没有attr,且MetaClass中没有定义__getattr__,则抛出异常AttributeError
通过类设置属性
通过A.attr=val给属性赋值时:
1.如果MetaClass中定义了__setattr__,则执行该__setattr__
2.如果该属性是Descriptor,且定义了__set__,则执行Descriptor的__set__
3.如果是普通属性或None-data Descriptor,则直接令attr=val
4.如果属性不存在,则动态给类添加该属性,然后进行赋值
通过类删除属性
通过del A.attr删除属性时:
1.如果MetaClass中定义了__delattr__,则执行该__delattr__
2.如果该属性是Descriptor,且定义了__delete__,则执行Descriptor的__delete__
3.如果是普通属性,或虽是Descriptor但是没有定义__delete__,则直接从A.__dict__中删除该属性
4.如果属性不存在,则抛出异常AttributeError
以上这篇浅谈python类属性的访问、设置和删除方法就是小编分享给大家的全部内容了
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29