
斯坦福重磅报告:十张图剖析AI发展趋势,这类人的工资中位数已超10万美元!
美国顶尖学府斯坦福大学(Stanford University)AI 100中AI Index项目旨在追踪人工智能的活动和进展,研究人工智能对人们生活的影响。AI Index专注于追踪和观察AI的活动和进展,并以可靠、可验证数据为基础,促进对AI的了解。
AI Index在新旧年份交替之际公布了团队成立以来第一份报告,其中具有代表性的十张图可以帮助我们快速、全面了解AI这一行业高速发展的启发和见解。
AI学术研究论文激增9倍以上
自1996年以来,每年发表的计算机科学的学术论文和研究的数量猛增了9倍以上。学术论文和研究通常能产生新的知识产权和专利。整个Scopus数据库中,含有“Artificial Intelligence”这个关键词的计算机科学领域的论文有超过200,000(200237)篇。Scopus数据库中“计算机科学”领域的论文总共有近500万(4868421)篇。
AI风险投资激增6倍
自2000年以来,在美国,风险投资者(VC)每年投入AI创业公司的投资额增加了6倍。Crunchbase,VentureSource和Sand Hill Econometrics被用于确定VC每年投给初创公司的资金额,这些初创公司在某些关键领域起着重要作用。上图显示了VC在美国所有融资阶段对AI创业公司年度投资总额。
AI创业公司激增14倍
自2000年以来,在美国,有资本支持的 AI 创业公司数量增加了 14 倍。Crunchbase,VentureSource和Sand Hill Econometrics也用于这一分析。这个数字包括VentureSource数据库中Crunchbase列表中的任何有VC支持的公司。
要求AI技能岗位激增4.5倍
自2013年以来,要求有AI技能的工作岗位增长了4.5倍。在Indeed.com平台上,需要AI技能的工作岗位所占份额的计算方法是通过职业描述中的标题和关键字来确定是否与人工智能相关。AI Index研究还计算了在Indeed.com平台上,要求人工智能技术的工作岗位份额在不同国家的增长情况。尽管加拿大和英国增长迅速,但对于人才招聘市场, Indeed.com的报告显示加拿大和英国分别只占美国AI招聘市场绝对规模的5%和27%。
以及NLP成为核心技能
在线求职平台Monster.com上数据显示,机器学习,深度学习和自然语言处理(NLP)是最重要的三项技能。两年前NLP已经被预测会成为应用程序开发人员创建新的AI应用程序最需要的技能。除了创建AI应用程序,最受欢迎的技能还包括机器学习技术,Python,Java,C ++,开源开发环境的经验,Spark,MATLAB和Hadoop。根据对Monster.com的分析,在美国,数据科学家,高级数据科学家,人工智能顾问和机器学习主管的薪水中位数为$127000。
图像标注错误率
巨幅下滑至2.5%以下
自2010年以来,图像标注的错误率从28.5%下降到2.5%以下。大规模视觉识别挑战赛(LSVRC)的对象检测任务的AI拐点发生在2014年。在这项特定任务中,AI已经表现得比人类更准确。这些发现来自于ImageNet网站上LSVRC竞赛排行榜的竞赛数据。
机器人进口量激增至25万
从国际上看,机器人的进口量已经从2000年的10万台左右增长到了2015年的25万台左右。数据来源是每年进口到北美以及国际整体的工业机器人的数量。工业机器人由ISO 8373:2012标准定义。国际数据公司(IDC)预测对机器人的消费将在五年内加快,到2021年达到2307亿美元,复合年增长率(CAGR)为22.8%。
AI企业应用全球营收激增50%以上
到2025年,来自人工智能企业应用的全球营收预计将从2018年的1.62亿美元增长到31.2亿美元,涨幅达到52.59%。图像识别和标记、医疗数据处理、定位和地图、预测性维护、使用算法和机器学习预测和阻止安全威胁、智能招聘和人力资源系统等等,是企业应用AI的一些用例。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15