京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言中qplot()的用法
a, b, c, d, e, f, g, h = range(8)
ggplot2()函数
ggplot2是一个强大的作图工具,它可以让你不受现有图形类型的限制,创造出任何有助于解决你所遇到问题的图形。
qplot()
qplot()属于ggplot2(),可以理解成是它的简化版本。
qplot 即“快速作图”(quick plot),顾名思义,能快速对数据进行可视化分析。它的用法和R base包的plot函数很相似。
qplot()
参数
qplot(x, y = NULL, ..., data, facets = NULL,
margins = FALSE, geom = "auto", stat = list(NULL),
position = list(NULL), xlim = c(NA, NA),
ylim = c(NA, NA), log = "", main = NULL,
xlab = deparse(substitute(x)),
ylab = deparse(substitute(y)), asp = NA)
各项参数详解
1.x, y:变量名
2.data: 为数据框(data.frame)类型;如果有这个参数,那么x,y的名称必需对应数据框中某列变量的名称
3.facets: 图形/数据的分面。这是ggplot2作图比较特殊的一个概念,它把数据按某种规则进行分类,每一类数据做一个图形,所以最终效果就是一页多图
4.margins: 是否显示边界
5.geom: 图形的几何类型(geometry),这又是ggplot2的作图概念。ggplot2用几何类型表示图形类别,比如point表示散点图、line表示曲线图、bar表示柱形图等。
6.stat: 统计类型(statistics),这个更加特殊。直接将数据统计和图形结合,这是ggplot2强大和受欢迎的原因之一。
7.position: 图形或者数据的位置调整,这不算太特殊,但对于图形但外观很重要
8.xlim, ylim, 设置轴的上下限
9.xlab, ylab, 在x,y轴上增加标签
10.asp: 图形纵横比
qplot做散点图
使用向量数据
plot函数一样,如果不指定图形的类型,qplot默认做出散点图。对于给定的x和y向量做散点图,qplot用法也和plot函数差不多
> library(ggplot2)
> x <- 1:1000
> y <- rnorm(1000)
> plot(x, y, main="Scatter plot by plot()")
> qplot(x,y, main="Scatter plot by qplot()")


使用数据框数据
虽然可以直接使用向量数据,但ggplot2更倾向于使用数据框类型的数据作图。使用数据框有几个好处:数据框可以用来存储数值、字符串、因子等不同类型等数据;把数据放在同一个R数据框对象中可以避免使用过程中数据关系的混乱;数据外观的整理和转换方便。ggplot2中使用数据框作图的最直接的一个效果就是:你可以直接用数据的分类特性(数据框中的列变量)来决定图形元素的外观,这个过程在ggplot2中称为映射(mapping),是自动的。
在演示使用数据框作图的好处之前我们先了解以下ggplot2提供的一组有关钻石的示范数据 diamonds:
> str(diamonds)
Classes ‘tbl_df’, ‘tbl’ and 'data.frame': 53940 obs. of 10 variables:
$ carat : num 0.23 0.21 0.23 0.29 0.31 0.24 0.24 0.26 0.22 0.23 ...
$ cut : Ord.factor w/ 5 levels "Fair"<"Good"<..: 5 4 2 4 2 3 3 3 1 3 ...
$ color : Ord.factor w/ 7 levels "D"<"E"<"F"<"G"<..: 2 2 2 6 7 7 6 5 2 5 ...
$ clarity: Ord.factor w/ 8 levels "I1"<"SI2"<"SI1"<..: 2 3 5 4 2 6 7 3 4 5 ...
$ depth : num 61.5 59.8 56.9 62.4 63.3 62.8 62.3 61.9 65.1 59.4 ...
$ table : num 55 61 65 58 58 57 57 55 61 61 ...
$ price : int 326 326 327 334 335 336 336 337 337 338 ...
$ x : num 3.95 3.89 4.05 4.2 4.34 3.94 3.95 4.07 3.87 4 ...
$ y : num 3.98 3.84 4.07 4.23 4.35 3.96 3.98 4.11 3.78 4.05 ...
$ z : num 2.43 2.31 2.31 2.63 2.75 2.48 2.47 2.53 2.49 2.39 ...
可以看到这是数据框(data.frame)类型,有10个变量(列),每个变量有53940个测量值(行)。第一列为钻石的克拉数(carat),为数字型数据;第二列为钻石的切工好坏(cut),为因子类型数据,有5个水平;第三列为钻石颜色(color),为7水平的因子;后面还有其他数据。由于数据太多,我们只取前7列的100个随机观测值。数据基本就是我们平时记录原始数据的样式:
> set.seed(1000) # 设置随机种子,使随机取样具有可重复性
> datax<- diamonds[ seq(1,7)]
> head(datax, 4)
## carat cut color clarity depth table price
## 17686 1.23 Ideal H VS2 62.2 55 7130
## 40932 0.30 Ideal E SI1 61.7 58 499
## 6146 0.90 Good H VS2 61.9 58 3989
## 37258 0.31 Ideal G VVS1 62.8 57 977
如果要做钻石克拉和价格关系的曲线图,用plot和qplot函数都差不多:
plot(x=datax$carat, y=datax$price, xlab="Carat", ylab="Price", main="plot function")
qplot(x=carat, y=price, data=datax, xlab="Carat", ylab="Price", main="qplot function")

但如果要按切工进行分类作图,plot函数的处理就复杂了,你首先得将数据进行分类提取,然后再一个个作图。虽然可以用循环完成,但作图后图标的添加还得非常小心,你得自己保证数据和图形外观之间的对应关系:
plot(x=datax$carat, y=datax$price, xlab="Carat", ylab="Price", main="plot function", type='n')
cut.levels <- levels(datax$cut)
cut.n <- length(cut.levels)
for(i in seq(1,cut.n)){
subdatax <- datax[datax$cut==cut.levels[i], ]
points(x=subdatax$carat, y=subdatax$price, col=i, pch=i)
}
legend("topleft", legend=cut.levels, col=seq(1,cut.n), pch=seq(1,cut.n), box.col="transparent", cex=0.8)

但用ggplot2作图你需要考虑数据分类和图形元素方面的问题就很少,你只要告诉它用做分类的数据就可以了:
qplot(x=carat, y=price, data=datax, color=cut, shape=cut, main="qplot function")

qplot做曲线图
和plot函数一样,qplot也可以通过设置合适的参数产生曲线图,这个参数就是geom(几何类型)。图形的组合非常直接,组合表示几何类型的向量即可:
qplot(x=carat, y=price, data=datax, color=cut, geom="line", main="geom=\"line\"")
qplot(x=carat, y=price, data=datax, color=cut, geom=c("line", "point"), main="geom=c(\"line\", \"point\")")

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27