京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何用 Python 爬取自己的微信朋友
微信作为一款拥有将近9亿用户的超级APP,已经成为很多人生活中不可或缺的一部分,聊天、分享动态、阅读资讯、购物支付……微信就像一张移动互联网的身份证,拥有它就能在移动互联的世界行止由心。本文作者利用 Python 爬取了自己微信好友的信息后,像打开了一扇新世界的大门。一起来围观他的爬取过程吧。
昨晚偶然了解到 Python 里的 itchat 包,它已经完成了 wechat 的个人账号 API 接口,使爬取个人微信信息更加方便。鉴于自己很早之前就想知道诸如自己微信好友性别比例都来自哪个城市之类的问题,于是乎玩心一起,打算爬一下自己的微信。
首先,在终端安装一下 itchat 包。
安装完成后导入包,再登陆自己的微信。过程中会生产一个登陆二维码,扫码之后即可登陆。登陆成功后,把自己好友的相关信息爬下来。
有了上面的 friends 数据,我们就可以来做分析啦。
自己微信好友的男女比例
仔细观察了一下返回的数据结构,发现”性别“是存放在一个字典里面的,key 是”Sex“,男性值为 1,女性为 2,其他是不明性别的(就是没有填的)。可以写个循环获取想要的性别数据,得到自己微信好友的性别比例。
打印的结果为:
男性好友:37.65%
女性好友:59.23%
不明性别好友:3.12%
啊,一不小心就暴露了自己女性朋友比较多的事实。然而为什么我现在还是一只汪?!好了,再把这个数据用R画成图看看(Python 作图真的是忍不了,代码就不放了):
自己微信好友的城市分布
再仔细观察 friends 列表,发现里面还包含了好友昵称、省份、城市、个人简介等等的数据,刚好可以用来分析好友城市分布,最好的方式是定义一个函数把数据都爬下来,存到数据框里,再进行分析。
以上便得到一个叫 data 的 csv 桌面文件, 用 R 打开并简单做一下数据预处理,得到如下(涉及隐私的已被预处理):
接着先根据省份、城市进行数据的分组和聚合,选择排名前二十的,利用 ggplot2 包画出如下的城市分布图(代码太长,不放了,就是这么任性,有需要参考的直接向我拿):
看来我大部分的朋友都是在广东的(不是废话吗),其中广东的朋友大部分集中在广、深、珠,第二名是在奥克兰, 接着是四川、澳门等。灰色的 NA 值是指没有设置自己所在地的朋友,一共有 70 多人。
另外,在国外的朋友由于微信的设置问题(很多是直接跳过省份,只有城市可以选择的),很多国外的城市被误当成了省份。
再来一张图看看自己微信朋友在广东的具体分布(取前八):
自己微信好友个性签名的自定义词云图
好玩的来了。之前已经爬下了每个好友的个性签名,刚好可以分析一下大伙儿个性签名时使用的高频词语是什么,顺便可以做个词云图。
先把原先爬下来的个性签名(Signature)打印出来,发现有很多本来是表情的,变成了 emoji、span、class 等等这些无关紧要的词,需要先替换掉,另外,还有类似<>/= 之类的符号,也需要写个简单的正则替换掉,再把所有拼起来,得到 text 字串。
接着就可以把 JB,啊不,把结巴分词这个包搞进来分词。
终于可以进入画图阶段了。可以根据自己想要的图片、形状、颜色画出相似的图形(在这里,我使用的是我的头像,当然,为了颜色可以更加鲜艳使最后画出的词云图更加好看易辨,我先对自己的头像用 PS 做了一点小处理)。为此,我们需要把 matplotlib、wordcloud、numpy、PIL 等包搞进来。
运行上面的代码,得到下面的图:
看来,在我的微信好友的个人签名里,有人善于聆听,有人强调善良,有人重视灵魂,有人凝视人生。一直在等待,不放弃寻找。历尽曲折,不畏虚伪。真心如一,不能辜负。一步一生多努力,一起一切 one more dream(真编不下去了)。
最后
以上是不是很有趣呢?是不是又打开了一扇新世界的大门呢?
我微信好友也不是太多,如果微信好友有几千个,可以得到几千条数据,分析一下还是很有价值的。
当然,itchat 包还有很多其他的功能还有待发掘,包括自动回复微信信息、自动添加好友、管理微信群等,有时间再慢慢摸索吧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27