
SPSS转换菜单:创建时间序列
1、概念:“创建时间序列”对话框允许您基于现有数值型时间序列变量的函数创建新的变量。这些转换后的值在时间序列分析中非常有用。
2、操作:转换-创建时间序列
3、说明:时间序列转换函数如下:
◎差分。序列中相邻值之间的非季节性差异。阶数为用于计算差分的以前值个数。由于每阶差分丢失一个观察值,因此系统缺失值会出现在序列开头。例如,如果差分阶数为2,则前两个个案会包含新变量的系统缺失值。
◎季节性差分。相隔恒定距离的序列值之间的差分。该跨度基于当前定义的周期。要计算季节性差分,您必须定义日期变量(“日期”菜单,“定义日期”),其中包括周期性成分(例如一年中的月份)。阶数为用于计算差分的季节性周期个数。在序列开头,带有系统缺失值的个案个数,等于阶数乘以周期。例如,如果当前周期为12,且阶数为2,则前24个个案会包含新变量的系统缺失值。
◎中心移动平均数。当前序列值与其周围某个跨度内序列值的平均值。跨度为用于计算平均值的序列值个数。如果跨度为偶数,则移动平均数通过对每组非中心平均值求平均值而得出。在跨度为n的序列开头和末尾,带有系统缺失值的个案个数,等于n/2(偶数跨度值)和(n–1)/2(奇数跨度值)。例如,如果跨度为5,则在序列开头和末尾带有系统缺失值的个案个数为2。
◎前移动平均数。当前序列值之前的序列值的平均值。跨度为用于计算平均值的前面序列值个数。在序列开头,带有系统缺失值的个案个数,等于跨度值。
◎移动中位数。当前序列值与其周围某个跨度内序列值的中位数。跨度为用于计算中位数的序列值个数。如果跨度为偶数,则中位数通过对每组非中心中位数求平均值而得出。在跨度为n的序列开头和末尾,带有系统缺失值的个案个数,等于n/2(偶数跨度值)和(n–1)/2(奇数跨度值)。例如,如果跨度为5,则在序列开头和末尾带有系统缺失值的个案个数为2。
◎累积和。当前序列值与其周围序列值的累积和。
◎延迟。根据指定的延迟阶数,上一个个案的值。阶数为从中获取值的当前个案之前的个案个数。在序列开头,带有系统缺失值的个案个数,等于阶数值。
◎提前。根据指定的提前阶数,后一个个案的值。阶数为从中获取值的当前个案之后的个案个数。在序列末尾,带有系统缺失值的个案个数,等于阶数值。
◎平滑。基于复合数据平滑器的新序列值。平滑器从移动中位数4开始,由移动中位数2居中。然后,它再通过移动中位数5、移动中位数3和Hanning加权平均,重新对这些值进行平滑。从原始序列中减去平滑后的序列,计算得出残差。然后对计算得出的残差重复这整个过程。最后,减去该过程首次获得的平滑值,得到平滑残差。这有时也称为T4253H平滑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04